We investigate the properties of domain walls arising from non-Abelian discrete symmetries, which we refer to as non-Abelian domain walls. We focus on S4, one of the most commonly used groups in lepton flavour mixing models. The spontaneous breaking of S4 leads to distinct vacua preserving a residual Z2 or Z3 symmetry. Five types of domain walls are found, labelled as SI, SII, TI, TII, and TIII, respectively, the former two separating Z2 vacua and the latter three separating Z3 vacua. We highlight that SI, TI and TIII may be unstable for some regions of the parameter space and decay to stable domain walls. Stable domain walls can collapse and release gravitational radiation for a suitable size of explicit symmetry breaking. A symmetry-breaking scale of order 100 TeV may explain the recent discovery of nanohertz gravitational waves by PTA experiments. For the first time, we investigate the properties of these domain walls, which we obtain numerically with semi-analytical formulas applied to compute the tension and thickness across a wide range of parameter space. We estimate the resulting gravitational wave spectrum and find that, thanks to their rich vacuum structure, non-Abelian domain walls manifest in a very interesting and complex phenomenology.

Fu, B., King, S.F., Marsili, L., Pascoli, S., Turner, J., Zhou, Y. (2025). Non-Abelian domain walls and gravitational waves. JOURNAL OF HIGH ENERGY PHYSICS, 2025(4), 1-29 [10.1007/jhep04(2025)142].

Non-Abelian domain walls and gravitational waves

Marsili, Luca;Pascoli, Silvia;
2025

Abstract

We investigate the properties of domain walls arising from non-Abelian discrete symmetries, which we refer to as non-Abelian domain walls. We focus on S4, one of the most commonly used groups in lepton flavour mixing models. The spontaneous breaking of S4 leads to distinct vacua preserving a residual Z2 or Z3 symmetry. Five types of domain walls are found, labelled as SI, SII, TI, TII, and TIII, respectively, the former two separating Z2 vacua and the latter three separating Z3 vacua. We highlight that SI, TI and TIII may be unstable for some regions of the parameter space and decay to stable domain walls. Stable domain walls can collapse and release gravitational radiation for a suitable size of explicit symmetry breaking. A symmetry-breaking scale of order 100 TeV may explain the recent discovery of nanohertz gravitational waves by PTA experiments. For the first time, we investigate the properties of these domain walls, which we obtain numerically with semi-analytical formulas applied to compute the tension and thickness across a wide range of parameter space. We estimate the resulting gravitational wave spectrum and find that, thanks to their rich vacuum structure, non-Abelian domain walls manifest in a very interesting and complex phenomenology.
2025
Fu, B., King, S.F., Marsili, L., Pascoli, S., Turner, J., Zhou, Y. (2025). Non-Abelian domain walls and gravitational waves. JOURNAL OF HIGH ENERGY PHYSICS, 2025(4), 1-29 [10.1007/jhep04(2025)142].
Fu, Bowen; King, Stephen F.; Marsili, Luca; Pascoli, Silvia; Turner, Jessica; Zhou, Ye-Ling
File in questo prodotto:
File Dimensione Formato  
JHEP04(2025)142.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.9 MB
Formato Adobe PDF
1.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1028610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact