Second-, third-, and fourth-generation biofuels represent an important response to the challenges of clean energy supply and climate change. In this context, the Horizon 2020 “TO-SYN-FUEL” project aimed to produce advanced biofuels together with phosphorus from municipal wastewater sludge through a combination of technologies including a Thermo-Catalytic Reforming system, Pressure Swing Adsorption for hydrogen separation, Hydrodeoxygenation, and biochar gasification for phosphorous recovery. This article presents the environmental performance results of the demonstrator installed in Hohenberg (Germany), with a capacity of 500 kg per hour of dried sewage sludge. In addition, four alternative scenarios are assessed, differing in the source of additional thermal energy used for sludge drying: natural gas, biogas, heat pump, and a hybrid solar greenhouse. The environmental performance of these scenarios is then compared with that of conventional fuel. The comparative study of these scenarios demonstrates that the biofuel obtained through wood gasification complies with the Renewable Energy Directive, while natural gas remains the least sustainable option. Heat pumps, biogas, and greenhouse drying emerge as promising alternatives to align biofuel production with EU sustainability targets. Phosphorus recovery from sewage sludge ash proves essential for compliance, offering clear environmental benefits. Although sewage sludge is challenging due to its high water content, it represents a valuable feedstock whose sustainable management can enhance both energy recovery and nutrient recycling.

Righi, S., Baioli, F., Contin, A., Marazza, D. (2025). TO-SYN-FUEL Project to Convert Sewage Sludge in Value-Added Products: A Comparative Life Cycle Assessment. ENERGIES, 18(19), 1-22 [10.3390/en18195283].

TO-SYN-FUEL Project to Convert Sewage Sludge in Value-Added Products: A Comparative Life Cycle Assessment

Righi S.
Primo
Writing – Original Draft Preparation
;
Baioli F.
Secondo
Writing – Original Draft Preparation
;
Contin A.
Funding Acquisition
;
Marazza D.
Ultimo
Writing – Review & Editing
2025

Abstract

Second-, third-, and fourth-generation biofuels represent an important response to the challenges of clean energy supply and climate change. In this context, the Horizon 2020 “TO-SYN-FUEL” project aimed to produce advanced biofuels together with phosphorus from municipal wastewater sludge through a combination of technologies including a Thermo-Catalytic Reforming system, Pressure Swing Adsorption for hydrogen separation, Hydrodeoxygenation, and biochar gasification for phosphorous recovery. This article presents the environmental performance results of the demonstrator installed in Hohenberg (Germany), with a capacity of 500 kg per hour of dried sewage sludge. In addition, four alternative scenarios are assessed, differing in the source of additional thermal energy used for sludge drying: natural gas, biogas, heat pump, and a hybrid solar greenhouse. The environmental performance of these scenarios is then compared with that of conventional fuel. The comparative study of these scenarios demonstrates that the biofuel obtained through wood gasification complies with the Renewable Energy Directive, while natural gas remains the least sustainable option. Heat pumps, biogas, and greenhouse drying emerge as promising alternatives to align biofuel production with EU sustainability targets. Phosphorus recovery from sewage sludge ash proves essential for compliance, offering clear environmental benefits. Although sewage sludge is challenging due to its high water content, it represents a valuable feedstock whose sustainable management can enhance both energy recovery and nutrient recycling.
2025
Righi, S., Baioli, F., Contin, A., Marazza, D. (2025). TO-SYN-FUEL Project to Convert Sewage Sludge in Value-Added Products: A Comparative Life Cycle Assessment. ENERGIES, 18(19), 1-22 [10.3390/en18195283].
Righi, S.; Baioli, F.; Contin, A.; Marazza, D.
File in questo prodotto:
File Dimensione Formato  
energies-18-05283.pdf

accesso aperto

Descrizione: articolo completo
Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.97 MB
Formato Adobe PDF
1.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1028600
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact