We study the thermodynamic properties of the generalized non-convex multispecies Curie–Weiss model, where interactions among different types of particles (forming the species) are encoded in a generic matrix. For spins with a generic prior distribution, we compute the thermodynamic limit of the generating functional for the moments of the Boltzmann–Gibbs measure using simple interpolation techniques. For Ising spins, we further analyze the fluctuations of the magnetization in the thermodynamic limit under the Boltzmann–Gibbs measure. It is shown that a central limit theorem (CLT) holds for a rescaled and centered vector of species magnetizations, which converges to either a centered or non-centered multivariate normal distribution, depending on the rate of convergence of the relative sizes of the species.

Camilli, F., Mingione, E., Osabutey, G. (2025). Limit Theorems for the Non-Convex Multispecies Curie–Weiss Model. MATHEMATICS, 13(8), 1-25 [10.3390/math13081343].

Limit Theorems for the Non-Convex Multispecies Curie–Weiss Model

Camilli, Francesco;Mingione, Emanuele;Osabutey, Godwin
2025

Abstract

We study the thermodynamic properties of the generalized non-convex multispecies Curie–Weiss model, where interactions among different types of particles (forming the species) are encoded in a generic matrix. For spins with a generic prior distribution, we compute the thermodynamic limit of the generating functional for the moments of the Boltzmann–Gibbs measure using simple interpolation techniques. For Ising spins, we further analyze the fluctuations of the magnetization in the thermodynamic limit under the Boltzmann–Gibbs measure. It is shown that a central limit theorem (CLT) holds for a rescaled and centered vector of species magnetizations, which converges to either a centered or non-centered multivariate normal distribution, depending on the rate of convergence of the relative sizes of the species.
2025
Camilli, F., Mingione, E., Osabutey, G. (2025). Limit Theorems for the Non-Convex Multispecies Curie–Weiss Model. MATHEMATICS, 13(8), 1-25 [10.3390/math13081343].
Camilli, Francesco; Mingione, Emanuele; Osabutey, Godwin
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1028400
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact