We consider a prototypical problem of Bayesian inference for a structured spiked model: a low-rank signal is corrupted by additive noise. While both information-theoretic and algorithmic limits are well understood when the noise is a Gaussian Wigner matrix, the more realistic case of structured noise still remains challenging. To capture the structure while maintaining mathematical tractability, a line of work has focused on rotationally invariant noise. However, existing studies either provide suboptimal algorithms or are limited to a special class of noise ensembles. In this paper, using tools from statistical physics (replica method) and random matrix theory (generalized spherical integrals) we establish the characterization of the information-theoretic limits for a noise matrix drawn from a general trace ensemble. Remarkably, our analysis unveils the asymptotic equivalence between the rotationally invariant model and a surrogate Gaussian one. Finally, we show how to saturate the predicted statistical limits using an efficient algorithm inspired by the theory of adaptive Thouless-AndersonPalmer (TAP) equations.
Barbier, J., Camilli, F., Xu, Y., Mondelli, M. (2025). Information limits and Thouless-Anderson-Palmer equations for spiked matrix models with structured noise. PHYSICAL REVIEW RESEARCH, 7(1), 013081-1-013081-15 [10.1103/physrevresearch.7.013081].
Information limits and Thouless-Anderson-Palmer equations for spiked matrix models with structured noise
Barbier, Jean
;Camilli, Francesco;
2025
Abstract
We consider a prototypical problem of Bayesian inference for a structured spiked model: a low-rank signal is corrupted by additive noise. While both information-theoretic and algorithmic limits are well understood when the noise is a Gaussian Wigner matrix, the more realistic case of structured noise still remains challenging. To capture the structure while maintaining mathematical tractability, a line of work has focused on rotationally invariant noise. However, existing studies either provide suboptimal algorithms or are limited to a special class of noise ensembles. In this paper, using tools from statistical physics (replica method) and random matrix theory (generalized spherical integrals) we establish the characterization of the information-theoretic limits for a noise matrix drawn from a general trace ensemble. Remarkably, our analysis unveils the asymptotic equivalence between the rotationally invariant model and a surrogate Gaussian one. Finally, we show how to saturate the predicted statistical limits using an efficient algorithm inspired by the theory of adaptive Thouless-AndersonPalmer (TAP) equations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


