Stochastic neural networks are a prototypical computational device able to build a probabilistic representation of an ensemble of external stimuli. Building on the relationship between inference and learning, we derive a synaptic plasticity rule that relies only on delayed activity correlations, and that shows a number of remarkable features. Our delayed-correlations matching (DCM) rule satisfies some basic requirements for biological feasibility: finite and noisy afferent signals, Dale's principle and asymmetry of synaptic connections, locality of the weight update computations. Nevertheless, the DCM rule is capable of storing a large, extensive number of patterns as attractors in a stochastic recurrent neural network, under general scenarios without requiring any modification: it can deal with correlated patterns, a broad range of architectures (with or without hidden neuronal states), one-shot learning with the palimpsest property, all the while avoiding the proliferation of spurious attractors. When hidden units are present, our learning rule can be employed to construct Boltzmann machine-like generative models, exploiting the addition of hidden neurons in feature extraction and classification tasks.

Saglietti, L., Gerace, F., Ingrosso, A., Baldassi, C., Zecchina, R. (2018). From statistical inference to a differential learning rule for stochastic neural networks. INTERFACE FOCUS, 8(6), 1-9 [10.1098/rsfs.2018.0033].

From statistical inference to a differential learning rule for stochastic neural networks

Gerace F.;
2018

Abstract

Stochastic neural networks are a prototypical computational device able to build a probabilistic representation of an ensemble of external stimuli. Building on the relationship between inference and learning, we derive a synaptic plasticity rule that relies only on delayed activity correlations, and that shows a number of remarkable features. Our delayed-correlations matching (DCM) rule satisfies some basic requirements for biological feasibility: finite and noisy afferent signals, Dale's principle and asymmetry of synaptic connections, locality of the weight update computations. Nevertheless, the DCM rule is capable of storing a large, extensive number of patterns as attractors in a stochastic recurrent neural network, under general scenarios without requiring any modification: it can deal with correlated patterns, a broad range of architectures (with or without hidden neuronal states), one-shot learning with the palimpsest property, all the while avoiding the proliferation of spurious attractors. When hidden units are present, our learning rule can be employed to construct Boltzmann machine-like generative models, exploiting the addition of hidden neurons in feature extraction and classification tasks.
2018
Saglietti, L., Gerace, F., Ingrosso, A., Baldassi, C., Zecchina, R. (2018). From statistical inference to a differential learning rule for stochastic neural networks. INTERFACE FOCUS, 8(6), 1-9 [10.1098/rsfs.2018.0033].
Saglietti, L.; Gerace, F.; Ingrosso, A.; Baldassi, C.; Zecchina, R.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1028255
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact