Transfer learning (TL) is a well-established machine learning technique to boost the generalization performance on a specific (target) task using information gained from a related (source) task, and it crucially depends on the ability of a network to learn useful features. Leveraging recent analytical progress in the proportional regime of deep learning theory (i.e., the limit where the size of the training set P and the size of the hidden layers N are taken to infinity keeping their ratio alpha = P/N finite), in this Letter we develop a novel single-instance Franz-Parisi formalism that yields an effective theory for TL in fully connected neural networks. Unlike the (lazy-training) infinite-width limit, where TL is ineffective, we demonstrate that in the proportional limit TL occurs due to a renormalized source-target kernel that quantifies their relatedness and determines whether TL is beneficial for generalization.

Ingrosso, A., Pacelli, R., Rotondo, P., Gerace, F. (2025). Statistical Mechanics of Transfer Learning in Fully Connected Networks in the Proportional Limit. PHYSICAL REVIEW LETTERS, 134(17), 1-9 [10.1103/PhysRevLett.134.177301].

Statistical Mechanics of Transfer Learning in Fully Connected Networks in the Proportional Limit

Gerace F.
2025

Abstract

Transfer learning (TL) is a well-established machine learning technique to boost the generalization performance on a specific (target) task using information gained from a related (source) task, and it crucially depends on the ability of a network to learn useful features. Leveraging recent analytical progress in the proportional regime of deep learning theory (i.e., the limit where the size of the training set P and the size of the hidden layers N are taken to infinity keeping their ratio alpha = P/N finite), in this Letter we develop a novel single-instance Franz-Parisi formalism that yields an effective theory for TL in fully connected neural networks. Unlike the (lazy-training) infinite-width limit, where TL is ineffective, we demonstrate that in the proportional limit TL occurs due to a renormalized source-target kernel that quantifies their relatedness and determines whether TL is beneficial for generalization.
2025
Ingrosso, A., Pacelli, R., Rotondo, P., Gerace, F. (2025). Statistical Mechanics of Transfer Learning in Fully Connected Networks in the Proportional Limit. PHYSICAL REVIEW LETTERS, 134(17), 1-9 [10.1103/PhysRevLett.134.177301].
Ingrosso, A.; Pacelli, R.; Rotondo, P.; Gerace, F.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1028253
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 2
social impact