A homogenisation procedure for energy-buffering structural layers with integrated electrical energy storage systems (capacitors) is described with the aim of calculating their shielding effectiveness to the electromagnetic waves when they are installed inside building walls. In fact, these storage systems may attenuate electromagnetic fields in the frequency ranges employed by mobile telephony, radio broadcasting, and wireless data transmission, thus impairing the operation of Internet of Things infrastructures. The capacitors inside the individual energy-buffering modules have a multilayered structure, in which the layers have very small thicknesses, making an analytical solution of the electromagnetic field for this kind of object practically impossible. Similarly, numerical solutions may not be practical due to the very small thickness of the layers compared to the overall object size. Therefore, this paper presents a simple and effective analytical method to model multilayered structures consisting of homogenising the whole capacitor, which can then be treated as a unique block of material with fictitious (but effective) electric and magnetic parameters. The method is based on multi-section transmission lines, and a quick and reliable analytical methodology is proposed to evaluate the shielding capabilities using the homogenised capacitor’s effective parameters. Moreover, experimental measurements on a real prototype have also been carried out to validate the methodology. Results show that the trend of the simulated and measured SE is the same, proving that the method can be employed to obtain a conservative estimation of the SE from numerical simulations.
Sandrolini, L., Simonazzi, M. (2025). Shielding Effectiveness Evaluation of Wall-Integrated Energy Storage Devices. ELECTRONICS, 14(17), 1-11 [10.3390/electronics14173385].
Shielding Effectiveness Evaluation of Wall-Integrated Energy Storage Devices
Sandrolini, Leonardo
;Simonazzi, Mattia
2025
Abstract
A homogenisation procedure for energy-buffering structural layers with integrated electrical energy storage systems (capacitors) is described with the aim of calculating their shielding effectiveness to the electromagnetic waves when they are installed inside building walls. In fact, these storage systems may attenuate electromagnetic fields in the frequency ranges employed by mobile telephony, radio broadcasting, and wireless data transmission, thus impairing the operation of Internet of Things infrastructures. The capacitors inside the individual energy-buffering modules have a multilayered structure, in which the layers have very small thicknesses, making an analytical solution of the electromagnetic field for this kind of object practically impossible. Similarly, numerical solutions may not be practical due to the very small thickness of the layers compared to the overall object size. Therefore, this paper presents a simple and effective analytical method to model multilayered structures consisting of homogenising the whole capacitor, which can then be treated as a unique block of material with fictitious (but effective) electric and magnetic parameters. The method is based on multi-section transmission lines, and a quick and reliable analytical methodology is proposed to evaluate the shielding capabilities using the homogenised capacitor’s effective parameters. Moreover, experimental measurements on a real prototype have also been carried out to validate the methodology. Results show that the trend of the simulated and measured SE is the same, proving that the method can be employed to obtain a conservative estimation of the SE from numerical simulations.| File | Dimensione | Formato | |
|---|---|---|---|
|
electronics-14-03385.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.13 MB
Formato
Adobe PDF
|
1.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


