Thanks to their low-cost, portability, and sustainability, microfluidic thread-based analytical devices (μTADs) are emerging as an attractive analytical platform for wearable biosensing. While several μTADs, mainly based on colorimetric and electrochemical detection methods, have been developed, achieving the needed sensitivity and accuracy for these biosensors continues to present a significant challenge. Prompted by this need we investigated for the first time the implementation of chemiluminescence (CL) as a detection technique for μTADs. Exploiting the lactate oxidase-catalyzed reaction coupled with the enhanced luminol/H2O2/horseradish peroxidase CL system, we developed a cotton-thread-based chemiluminescent device enabling the detection of lactate with a limit of detection of 0.25 mM in a 2 µL volume of artificial sweat at pH 6.5 within 3 min. The use of recycled grape skin as support made the device sustainable, while the smartphone detection allowed a simple and quantitative readout for the end-user. Using a smartphone as a detector, the analytical performance was evaluated in different conditions and in the presence of potential interferents, showing suitability for monitoring lactate levels in physiological conditions, such as for monitoring anaerobic thresholds in endurance training.
Maiorano, E., Calabretta, M.M., Lunedei, E., Michelini, E. (2025). All-in-One Sustainable Thread Biosensor for Chemiluminescence Smartphone Detection of Lactate in Sweat. BIOSENSORS, 15(8), 1-11 [10.3390/bios15080530].
All-in-One Sustainable Thread Biosensor for Chemiluminescence Smartphone Detection of Lactate in Sweat
Maiorano, Emanuela;Calabretta, Maria Maddalena;Michelini, Elisa
2025
Abstract
Thanks to their low-cost, portability, and sustainability, microfluidic thread-based analytical devices (μTADs) are emerging as an attractive analytical platform for wearable biosensing. While several μTADs, mainly based on colorimetric and electrochemical detection methods, have been developed, achieving the needed sensitivity and accuracy for these biosensors continues to present a significant challenge. Prompted by this need we investigated for the first time the implementation of chemiluminescence (CL) as a detection technique for μTADs. Exploiting the lactate oxidase-catalyzed reaction coupled with the enhanced luminol/H2O2/horseradish peroxidase CL system, we developed a cotton-thread-based chemiluminescent device enabling the detection of lactate with a limit of detection of 0.25 mM in a 2 µL volume of artificial sweat at pH 6.5 within 3 min. The use of recycled grape skin as support made the device sustainable, while the smartphone detection allowed a simple and quantitative readout for the end-user. Using a smartphone as a detector, the analytical performance was evaluated in different conditions and in the presence of potential interferents, showing suitability for monitoring lactate levels in physiological conditions, such as for monitoring anaerobic thresholds in endurance training.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


