The problem of ensuring constraints satisfaction on the output of machine learning models is critical for many applications, especially in safety-critical domains. Modern approaches rely on penalty-based methods at training time, which do not guarantee to avoid constraints violations; or constraint-specific model architectures (e.g., for monotonocity); or on output projection, which requires to solve an optimization problem that might be computationally demanding. We present the Hypersherical Constrained Representation, a novel method to enforce constraints in the output space for convex and bounded feasibility regions (generalizable to star domains). Our method operates on a different representation system, where Euclidean coordinates are converted into hyperspherical coordinates relative to the constrained region, which can only inherently represent feasible points. Experiments on a synthetic and a real-world dataset show that our method has predictive performance comparable to the other approaches, can guarantee 100% constraint satisfaction, and has a minimal computational cost at inference time.

Signorelli, G., Lombardi, M. (2025). Constrained Machine Learning Through Hyperspherical Representation. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND : Springer Science and Business Media Deutschland GmbH [10.1007/978-3-031-95976-9_13].

Constrained Machine Learning Through Hyperspherical Representation

Signorelli, Gaetano;Lombardi, Michele
2025

Abstract

The problem of ensuring constraints satisfaction on the output of machine learning models is critical for many applications, especially in safety-critical domains. Modern approaches rely on penalty-based methods at training time, which do not guarantee to avoid constraints violations; or constraint-specific model architectures (e.g., for monotonocity); or on output projection, which requires to solve an optimization problem that might be computationally demanding. We present the Hypersherical Constrained Representation, a novel method to enforce constraints in the output space for convex and bounded feasibility regions (generalizable to star domains). Our method operates on a different representation system, where Euclidean coordinates are converted into hyperspherical coordinates relative to the constrained region, which can only inherently represent feasible points. Experiments on a synthetic and a real-world dataset show that our method has predictive performance comparable to the other approaches, can guarantee 100% constraint satisfaction, and has a minimal computational cost at inference time.
2025
Lecture Notes in Computer Science
209
217
Signorelli, G., Lombardi, M. (2025). Constrained Machine Learning Through Hyperspherical Representation. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND : Springer Science and Business Media Deutschland GmbH [10.1007/978-3-031-95976-9_13].
Signorelli, Gaetano; Lombardi, Michele
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1027466
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact