The growing demand for fast and sustainable urban deliveries has accelerated exploration of the use of Unmanned Aerial Vehicles as viable logistics solutions for the last mile. This study investigates the integration of a distributed multi-agent system with a structured three-dimensional Urban Aerial Network (3D-UAN) for drone delivery operations. The proposed architecture models each drone as an autonomous agent operating within predefined air corridors and communication protocols. Unlike traditional approaches, which rely on simplified 2D models or centralized control systems, this research exploits a multilayered 3D network structure combined with decentralized decision-making for improving scalability, safety, and responsiveness in complex environments. Through agent-based simulations, this study evaluates the operational performance of the proposed system under varying fleet size conditions, focusing on travel times and system scalability. Preliminary results demonstrate that the potential of this approach in supporting efficient, adaptive, resilient logistics within Urban Air Mobility frameworks depends on both the size of the fleet operating in the 3D-UAN and constraints linked to the current regulations and technological properties, such as the maximum allowed operational height. These findings contribute to ongoing efforts to define robust operational architectures and simulation methodologies for next-generation urban freight transport systems.
Postorino, M.N., Sarnè, G.M.L. (2025). Operational Performance of a 3D Urban Aerial Network and Agent-Distributed Architecture for Freight Delivery by Drones. DRONES, 9, 1-22.
Operational Performance of a 3D Urban Aerial Network and Agent-Distributed Architecture for Freight Delivery by Drones
Postorino M. N.
;
2025
Abstract
The growing demand for fast and sustainable urban deliveries has accelerated exploration of the use of Unmanned Aerial Vehicles as viable logistics solutions for the last mile. This study investigates the integration of a distributed multi-agent system with a structured three-dimensional Urban Aerial Network (3D-UAN) for drone delivery operations. The proposed architecture models each drone as an autonomous agent operating within predefined air corridors and communication protocols. Unlike traditional approaches, which rely on simplified 2D models or centralized control systems, this research exploits a multilayered 3D network structure combined with decentralized decision-making for improving scalability, safety, and responsiveness in complex environments. Through agent-based simulations, this study evaluates the operational performance of the proposed system under varying fleet size conditions, focusing on travel times and system scalability. Preliminary results demonstrate that the potential of this approach in supporting efficient, adaptive, resilient logistics within Urban Air Mobility frameworks depends on both the size of the fleet operating in the 3D-UAN and constraints linked to the current regulations and technological properties, such as the maximum allowed operational height. These findings contribute to ongoing efforts to define robust operational architectures and simulation methodologies for next-generation urban freight transport systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


