The growing demand for fast and sustainable urban deliveries has accelerated exploration of the use of Unmanned Aerial Vehicles as viable logistics solutions for the last mile. This study investigates the integration of a distributed multi-agent system with a structured three-dimensional Urban Aerial Network (3D-UAN) for drone delivery operations. The proposed architecture models each drone as an autonomous agent operating within predefined air corridors and communication protocols. Unlike traditional approaches, which rely on simplified 2D models or centralized control systems, this research exploits a multilayered 3D network structure combined with decentralized decision-making for improving scalability, safety, and responsiveness in complex environments. Through agent-based simulations, this study evaluates the operational performance of the proposed system under varying fleet size conditions, focusing on travel times and system scalability. Preliminary results demonstrate that the potential of this approach in supporting efficient, adaptive, resilient logistics within Urban Air Mobility frameworks depends on both the size of the fleet operating in the 3D-UAN and constraints linked to the current regulations and technological properties, such as the maximum allowed operational height. These findings contribute to ongoing efforts to define robust operational architectures and simulation methodologies for next-generation urban freight transport systems.

Postorino, M.N., Sarnè, G.M.L. (2025). Operational Performance of a 3D Urban Aerial Network and Agent-Distributed Architecture for Freight Delivery by Drones. DRONES, 9, 1-22.

Operational Performance of a 3D Urban Aerial Network and Agent-Distributed Architecture for Freight Delivery by Drones

Postorino M. N.
;
2025

Abstract

The growing demand for fast and sustainable urban deliveries has accelerated exploration of the use of Unmanned Aerial Vehicles as viable logistics solutions for the last mile. This study investigates the integration of a distributed multi-agent system with a structured three-dimensional Urban Aerial Network (3D-UAN) for drone delivery operations. The proposed architecture models each drone as an autonomous agent operating within predefined air corridors and communication protocols. Unlike traditional approaches, which rely on simplified 2D models or centralized control systems, this research exploits a multilayered 3D network structure combined with decentralized decision-making for improving scalability, safety, and responsiveness in complex environments. Through agent-based simulations, this study evaluates the operational performance of the proposed system under varying fleet size conditions, focusing on travel times and system scalability. Preliminary results demonstrate that the potential of this approach in supporting efficient, adaptive, resilient logistics within Urban Air Mobility frameworks depends on both the size of the fleet operating in the 3D-UAN and constraints linked to the current regulations and technological properties, such as the maximum allowed operational height. These findings contribute to ongoing efforts to define robust operational architectures and simulation methodologies for next-generation urban freight transport systems.
2025
Postorino, M.N., Sarnè, G.M.L. (2025). Operational Performance of a 3D Urban Aerial Network and Agent-Distributed Architecture for Freight Delivery by Drones. DRONES, 9, 1-22.
Postorino, M. N.; Sarnè, G. M. L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1027453
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact