Noninvasive ventilation (NIV) is a well-established technique for managing acute respiratory failure in various clinical settings. However, safety concerns in clinical NIV applications emerge due to the absence of robust monitoring and alarm systems, potentially leading to issues such as CO2 rebreathing during flow-block events. This work aims to enhance the safety and monitoring of NIV systems by studying the integration of two types of carbon dioxide (CO2) sensors within NIV helmets. The investigation encompasses two main analyses. The first analysis explores the impact of varying the fresh inlet gas flow rate on local CO2 concentrations within the helmet. The second analysis investigates the response of CO2 sensors during simulated flow-block events, a critical safety concern in NIV therapy. In both analyses the effect of the sensor positioning is also investigated. Results demonstrate that higher fresh gas flow rates enhance CO2 washout within the helmet, highlighting the importance of optimizing gas flow rates to mitigate CO2 rebreathing. The positioning of CO2 sensors within the helmet was also found to significantly influence measurements by affecting signal stability and response to flow-block events. Overall, this study demonstrated the potential of integrating CO2 sensors within NIV helmets to enhance patient safety and treatment effectiveness. The knowledge gained from this study can be used to guide the design and optimization of NIV systems.

Gironi, C., Amiri, R., Baschetti, M.G., Boi, C., Cercenelli, L., Bortolani, B., et al. (2025). CO2 monitoring in non-invasive ventilation (NIV) helmets: A bench study assessment of sensor integration. HELIYON, 11(10), 1-11 [10.1016/j.heliyon.2025.e42500].

CO2 monitoring in non-invasive ventilation (NIV) helmets: A bench study assessment of sensor integration

Gironi C.
Primo
Writing – Original Draft Preparation
;
Amiri R.
Secondo
Writing – Review & Editing
;
Baschetti M. G.
Writing – Review & Editing
;
Boi C.
Supervision
;
Cercenelli L.
Writing – Review & Editing
;
Bortolani B.
Penultimo
Data Curation
;
Marcelli E.
Ultimo
Supervision
2025

Abstract

Noninvasive ventilation (NIV) is a well-established technique for managing acute respiratory failure in various clinical settings. However, safety concerns in clinical NIV applications emerge due to the absence of robust monitoring and alarm systems, potentially leading to issues such as CO2 rebreathing during flow-block events. This work aims to enhance the safety and monitoring of NIV systems by studying the integration of two types of carbon dioxide (CO2) sensors within NIV helmets. The investigation encompasses two main analyses. The first analysis explores the impact of varying the fresh inlet gas flow rate on local CO2 concentrations within the helmet. The second analysis investigates the response of CO2 sensors during simulated flow-block events, a critical safety concern in NIV therapy. In both analyses the effect of the sensor positioning is also investigated. Results demonstrate that higher fresh gas flow rates enhance CO2 washout within the helmet, highlighting the importance of optimizing gas flow rates to mitigate CO2 rebreathing. The positioning of CO2 sensors within the helmet was also found to significantly influence measurements by affecting signal stability and response to flow-block events. Overall, this study demonstrated the potential of integrating CO2 sensors within NIV helmets to enhance patient safety and treatment effectiveness. The knowledge gained from this study can be used to guide the design and optimization of NIV systems.
2025
Gironi, C., Amiri, R., Baschetti, M.G., Boi, C., Cercenelli, L., Bortolani, B., et al. (2025). CO2 monitoring in non-invasive ventilation (NIV) helmets: A bench study assessment of sensor integration. HELIYON, 11(10), 1-11 [10.1016/j.heliyon.2025.e42500].
Gironi, C.; Amiri, R.; Baschetti, M. G.; Boi, C.; Cercenelli, L.; Bortolani, B.; Marcelli, E.
File in questo prodotto:
File Dimensione Formato  
CO2 monitoring in non-invasive_Gironi_2025.pdf

accesso aperto

Descrizione: full text
Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 3.78 MB
Formato Adobe PDF
3.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1026838
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact