Collective adaptive systems are challenging from the engineering perspective. Different approaches aim at taming these systems either by specifying the behaviour programmatically or by using Machine Learning techniques. Aggregate programming is part of the first group and is a novel technique by which developers can express collective system behaviours from a global perspective, using a compositional and functional programming approach. Over the years, Aggregate Computing has been applied in different scenarios, ranging from smart cities to crowd of augmented people. Despite its promising capabilities, it is sometimes challenging to describe aggregate behaviours, so we aim at merging Aggregate Computing with Machine Learning techniques to simplify the aggregate program synthesis.

Aguzzi, G. (2021). Research directions for Aggregate Computing with Machine Learning. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA : Institute of Electrical and Electronics Engineers Inc. [10.1109/ACSOS-C52956.2021.00078].

Research directions for Aggregate Computing with Machine Learning

Gianluca Aguzzi
2021

Abstract

Collective adaptive systems are challenging from the engineering perspective. Different approaches aim at taming these systems either by specifying the behaviour programmatically or by using Machine Learning techniques. Aggregate programming is part of the first group and is a novel technique by which developers can express collective system behaviours from a global perspective, using a compositional and functional programming approach. Over the years, Aggregate Computing has been applied in different scenarios, ranging from smart cities to crowd of augmented people. Despite its promising capabilities, it is sometimes challenging to describe aggregate behaviours, so we aim at merging Aggregate Computing with Machine Learning techniques to simplify the aggregate program synthesis.
2021
Proceedings - 2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion, ACSOS-C 2021
310
312
Aguzzi, G. (2021). Research directions for Aggregate Computing with Machine Learning. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA : Institute of Electrical and Electronics Engineers Inc. [10.1109/ACSOS-C52956.2021.00078].
Aguzzi, Gianluca
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1026166
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact