This study investigates whether AI and ML tools can support European legislative drafting with advanced information retrieval using AI and which methods are more effective. The article proposes hybrid methods leveraging the combination of XML-annotated (Akoma Ntoso) texts and Natural Language Processing techniques that take advantage of the structure of the legal text to perform their tasks. In particular, the experiments conducted in this paper deal with three crucial functionalities for retrieving relevant legislative information with incomplete inputs using thematic similarity: normative references, legislative definitions, and legislative argument search. The study shows that computational approaches combining XML-based documents and Natural Language Processing (NLP) techniques can fruitfully support legal drafting tasks in European legislative institutions.

Corazza, M., Longo, G., Zilli, L., Di Sante, E., Sapienza, S., Palmirani, M. (2025). Hybrid AI Enhancing European Drafting Legislation for a Better Regulation [10.1109/ICEDEG65568.2025.11081650].

Hybrid AI Enhancing European Drafting Legislation for a Better Regulation

Corazza M.;Longo G.;Di Sante E.;Sapienza S.;Palmirani M.
2025

Abstract

This study investigates whether AI and ML tools can support European legislative drafting with advanced information retrieval using AI and which methods are more effective. The article proposes hybrid methods leveraging the combination of XML-annotated (Akoma Ntoso) texts and Natural Language Processing techniques that take advantage of the structure of the legal text to perform their tasks. In particular, the experiments conducted in this paper deal with three crucial functionalities for retrieving relevant legislative information with incomplete inputs using thematic similarity: normative references, legislative definitions, and legislative argument search. The study shows that computational approaches combining XML-based documents and Natural Language Processing (NLP) techniques can fruitfully support legal drafting tasks in European legislative institutions.
2025
2025 Eleventh International Conference on eDemocracy & eGovernment (ICEDEG)
106
113
Corazza, M., Longo, G., Zilli, L., Di Sante, E., Sapienza, S., Palmirani, M. (2025). Hybrid AI Enhancing European Drafting Legislation for a Better Regulation [10.1109/ICEDEG65568.2025.11081650].
Corazza, M.; Longo, G.; Zilli, L.; Di Sante, E.; Sapienza, S.; Palmirani, M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1024737
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact