Calendula officinalis L. is a widely used medicinal plant whose secondary metabolism and morphology are influenced by light. This study evaluated the effects of 2 and 4 h end-of-day (EOD) red/far-red (R:FR) and green (G) light on the growth, physiology, and phytochemical profile of hydroponically grown C. officinalis under a constant red/blue light background, compared with a red/blue control without EOD treatment. Morphological, physiological (gas exchange, chlorophyll fluorescence), biochemical (chlorophyll, anthocyanin), and chemical composition (attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and Gas Chromatography-Mass Spectrometry (GC-MS)) were evaluated. EOD G 2 h enhanced photosynthetic pigments, anthocyanins, and biomass, while control plants showed higher phenolic content. EOD R:FR induced stem elongation but reduced pigment and metabolite accumulation. GC-MS revealed organ-specific metabolic specialization, with flowers displaying greater chemical diversity than leaves. EOD G favored sesquiterpene diversity in flowers, while EOD R:FR increased nitrogen-containing compounds and unsaturated fatty acids. Vibrational data supported these shifts, with spectral signatures of esters, phenolics, and lipid-related structures. Bioactive compounds, including alpha-cadinol and carboxylic acids, were identified across treatments. These findings demonstrate that EOD light modulates physiological and metabolic traits in C. officinalis, highlighting EOD G as an enhancer of biomass and phytochemical richness for pharmaceutical applications under controlled conditions.

Lozano-Castellanos, L.F., Pennisi, G., Navas-Gracia, L.M., Orsini, F., Sánchez-Hernández, E., Martín-Ramos, P., et al. (2025). Physiological and Phytochemical Responses of Calendula officinalis L. to End-of-Day Red/Far-Red and Green Light. BIOLOGY, 14(8), 1-31 [10.3390/biology14080935].

Physiological and Phytochemical Responses of Calendula officinalis L. to End-of-Day Red/Far-Red and Green Light

Pennisi G.;Orsini F.;
2025

Abstract

Calendula officinalis L. is a widely used medicinal plant whose secondary metabolism and morphology are influenced by light. This study evaluated the effects of 2 and 4 h end-of-day (EOD) red/far-red (R:FR) and green (G) light on the growth, physiology, and phytochemical profile of hydroponically grown C. officinalis under a constant red/blue light background, compared with a red/blue control without EOD treatment. Morphological, physiological (gas exchange, chlorophyll fluorescence), biochemical (chlorophyll, anthocyanin), and chemical composition (attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and Gas Chromatography-Mass Spectrometry (GC-MS)) were evaluated. EOD G 2 h enhanced photosynthetic pigments, anthocyanins, and biomass, while control plants showed higher phenolic content. EOD R:FR induced stem elongation but reduced pigment and metabolite accumulation. GC-MS revealed organ-specific metabolic specialization, with flowers displaying greater chemical diversity than leaves. EOD G favored sesquiterpene diversity in flowers, while EOD R:FR increased nitrogen-containing compounds and unsaturated fatty acids. Vibrational data supported these shifts, with spectral signatures of esters, phenolics, and lipid-related structures. Bioactive compounds, including alpha-cadinol and carboxylic acids, were identified across treatments. These findings demonstrate that EOD light modulates physiological and metabolic traits in C. officinalis, highlighting EOD G as an enhancer of biomass and phytochemical richness for pharmaceutical applications under controlled conditions.
2025
Lozano-Castellanos, L.F., Pennisi, G., Navas-Gracia, L.M., Orsini, F., Sánchez-Hernández, E., Martín-Ramos, P., et al. (2025). Physiological and Phytochemical Responses of Calendula officinalis L. to End-of-Day Red/Far-Red and Green Light. BIOLOGY, 14(8), 1-31 [10.3390/biology14080935].
Lozano-Castellanos, L. F.; Pennisi, G.; Navas-Gracia, L. M.; Orsini, F.; Sánchez-Hernández, E.; Martín-Ramos, P.; Correa-Guimaraes, A....espandi
File in questo prodotto:
File Dimensione Formato  
Lozano Castellanos et al 2025.pdf

accesso aperto

Descrizione: published article
Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 3.04 MB
Formato Adobe PDF
3.04 MB Adobe PDF Visualizza/Apri
biology-3721119-supplementary.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1024227
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact