The regulation of State Aid is crucial for a well-functioning European Union Single Market. However, both non-compliance of Member States and subsidies from abroad can jeopardize the level playing field. This paper uses machine learning techniques applied to financial statements data to detect potentially distortive public subsidies to companies in the European Union Single Market. We achieve high out-of-sample predictive accuracy and use the machine predictions to flag suspect cases of hidden recipients and explore the characteristics of these firms.

Barone, G., Letta, M. (2025). Unlevel playing field? Machine Learning meets State Aid regulation. INTERNATIONAL JOURNAL OF INDUSTRIAL ORGANIZATION, 101, 1-14 [10.1016/j.ijindorg.2025.103175].

Unlevel playing field? Machine Learning meets State Aid regulation

Guglielmo Barone;
2025

Abstract

The regulation of State Aid is crucial for a well-functioning European Union Single Market. However, both non-compliance of Member States and subsidies from abroad can jeopardize the level playing field. This paper uses machine learning techniques applied to financial statements data to detect potentially distortive public subsidies to companies in the European Union Single Market. We achieve high out-of-sample predictive accuracy and use the machine predictions to flag suspect cases of hidden recipients and explore the characteristics of these firms.
2025
Barone, G., Letta, M. (2025). Unlevel playing field? Machine Learning meets State Aid regulation. INTERNATIONAL JOURNAL OF INDUSTRIAL ORGANIZATION, 101, 1-14 [10.1016/j.ijindorg.2025.103175].
Barone, Guglielmo; Letta, Marco
File in questo prodotto:
File Dimensione Formato  
revised_manuscript_noTC.pdf

embargo fino al 16/06/2026

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 737.37 kB
Formato Adobe PDF
737.37 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1023396
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact