We consider local weak solutions to PDEs of the type \[ -\,\mathrm{div}\left((\vert Du\vert-\lambda)_{+}^{p-1}\frac{Du}{\vert Du\vert}\right)=f\,\,\,\,\,\,\,\text{in}\,\,\Omega, \] where $1<\infty$, $\Omega$ is an open subset of $\mathbb{R}^{n}$ for $n\geq2$, $\lambda$ is a positive constant and $(\,\cdot\,)_{+}$ stands for the positive part. Equations of this form are widely degenerate for $p\ge 2$ and widely singular for $1<2$. We establish higher differentiability results for a suitable nonlinear function of the gradient $Du$ of the local weak solutions, assuming that $f$ belongs to the local Besov space $B^{(p-2)/p}_{p',1,loc}(\Omega)$ when $p>2$, and that $f\in L_{loc}^{{\frac{np}{n(p-1)+2-p}}}(\Omega)$ if $1
Ambrosio, P., Giuseppe Grimaldi, A., Passarelli Di Napoli, A. (2025). On the second-order regularity of solutions to widely singular or degenerate elliptic equations. ANNALI DI MATEMATICA PURA ED APPLICATA, N.D., N/A-N/A [10.1007/s10231-025-01607-7].
On the second-order regularity of solutions to widely singular or degenerate elliptic equations
Pasquale Ambrosio
Primo
;Antonia Passarelli di Napoli
2025
Abstract
We consider local weak solutions to PDEs of the type \[ -\,\mathrm{div}\left((\vert Du\vert-\lambda)_{+}^{p-1}\frac{Du}{\vert Du\vert}\right)=f\,\,\,\,\,\,\,\text{in}\,\,\Omega, \] where $1<\infty$, $\Omega$ is an open subset of $\mathbb{R}^{n}$ for $n\geq2$, $\lambda$ is a positive constant and $(\,\cdot\,)_{+}$ stands for the positive part. Equations of this form are widely degenerate for $p\ge 2$ and widely singular for $1<2$. We establish higher differentiability results for a suitable nonlinear function of the gradient $Du$ of the local weak solutions, assuming that $f$ belongs to the local Besov space $B^{(p-2)/p}_{p',1,loc}(\Omega)$ when $p>2$, and that $f\in L_{loc}^{{\frac{np}{n(p-1)+2-p}}}(\Omega)$ if $1I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


