Recent progress in inkjet printing of parts of biosensors are highlighted, with particular reference to the printing of biologically active molecules. We describe a system constituted by a thermal inkjet printer, adapted to layering a bidimensional array of dots [701 701 dots per inch] on solid supports. The printer was used to depose a β-galactosidase (GAL)-containing ink on a polyester sheet, with dots obtained from 10 pL drops, each drop containing in turn 6 pg of enzyme. The activity of GAL after the preparation was determined using a colorimetric probe (Brilliant Blue FCF). The activity loss of the microdeposed enzymes was found to be around 15%, showing that the 2 µsec-lasting thermal shock experienced by the biomolecule into the printhead nozzle affects to a lesser extent the activity of the thermal inkjet deposited enzyme. In conclusion, the most recent findings of our group in this line are depicted, and a view of possible future developments of the “biopolytronics” field is outlined.
Titolo: | Thermal Inkjet Technology for the Microdeposition of Biological Molecules as a Viable Route for the Realization of Biosensors |
Autore/i: | SETTI, LEONARDO; PIANA, CHIARA; BONAZZI, STEFANIA; BALLARIN, BARBARA; FRASCARO, DAVIDE; A. Fraleoni Morgera; GIULIANI, SILVIA |
Autore/i Unibo: | |
Anno: | 2004 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1081/AL-120037587 |
Abstract: | Recent progress in inkjet printing of parts of biosensors are highlighted, with particular reference to the printing of biologically active molecules. We describe a system constituted by a thermal inkjet printer, adapted to layering a bidimensional array of dots [701 701 dots per inch] on solid supports. The printer was used to depose a β-galactosidase (GAL)-containing ink on a polyester sheet, with dots obtained from 10 pL drops, each drop containing in turn 6 pg of enzyme. The activity of GAL after the preparation was determined using a colorimetric probe (Brilliant Blue FCF). The activity loss of the microdeposed enzymes was found to be around 15%, showing that the 2 µsec-lasting thermal shock experienced by the biomolecule into the printhead nozzle affects to a lesser extent the activity of the thermal inkjet deposited enzyme. In conclusion, the most recent findings of our group in this line are depicted, and a view of possible future developments of the “biopolytronics” field is outlined. |
Data prodotto definitivo in UGOV: | 2005-10-05 19:43:53 |
Appare nelle tipologie: | 1.01 Articolo in rivista |