This paper reports on the use of acetyl-L-valine (Ac-Val) as an effective and precise pH modifier for inducing hydrogel formation. Ac-Val offers several advantages: it is fully water-soluble, overcoming dissolution issues, and allows for stock solution preparation to fine-tune trigger volume and final material pH. As a weaker carboxylic acid compared to inorganic acids, Ac-Val enables more controlled pH variation. For comparison, a commercial lactic acid (LA) solution was also evaluated. The reliability of Ac-Val as a pH modifier was tested on three amino acid derivatives-Boc-Dopa(Bn)2-OH, Lau-Dopa(Bn)2-OH, and Pal-Phe-OH, all known to be efficient gelators. These molecules, sharing common structural features, form gels varying in transparency, robustness, and elasticity. Notably, Pal-Phe-OH is a supergelator. A key benefit of Ac-Val lies in its ability to cause an instantaneous pH modification, allowing for precise pH adjustment before the gel network forms. This pH-change approach with Ac-Val demonstrates broad applicability, enabling the creation of gels with tailored pH values for various acidic molecules, which is particularly valuable for applications like drug delivery where specific pH environments are crucial.

Stile, R., Montroni, D., Giuri, D., Tomasini, C. (2025). Simple pH-Triggered Control over Hydrogel Formation by Acetyl Valine. MOLECULES, 30(16), 1-15 [10.3390/molecules30163345].

Simple pH-Triggered Control over Hydrogel Formation by Acetyl Valine

Stile R.
Primo
Formal Analysis
;
Montroni D.
Secondo
Investigation
;
Giuri D.
Penultimo
Formal Analysis
;
Tomasini C.
Ultimo
Writing – Original Draft Preparation
2025

Abstract

This paper reports on the use of acetyl-L-valine (Ac-Val) as an effective and precise pH modifier for inducing hydrogel formation. Ac-Val offers several advantages: it is fully water-soluble, overcoming dissolution issues, and allows for stock solution preparation to fine-tune trigger volume and final material pH. As a weaker carboxylic acid compared to inorganic acids, Ac-Val enables more controlled pH variation. For comparison, a commercial lactic acid (LA) solution was also evaluated. The reliability of Ac-Val as a pH modifier was tested on three amino acid derivatives-Boc-Dopa(Bn)2-OH, Lau-Dopa(Bn)2-OH, and Pal-Phe-OH, all known to be efficient gelators. These molecules, sharing common structural features, form gels varying in transparency, robustness, and elasticity. Notably, Pal-Phe-OH is a supergelator. A key benefit of Ac-Val lies in its ability to cause an instantaneous pH modification, allowing for precise pH adjustment before the gel network forms. This pH-change approach with Ac-Val demonstrates broad applicability, enabling the creation of gels with tailored pH values for various acidic molecules, which is particularly valuable for applications like drug delivery where specific pH environments are crucial.
2025
Stile, R., Montroni, D., Giuri, D., Tomasini, C. (2025). Simple pH-Triggered Control over Hydrogel Formation by Acetyl Valine. MOLECULES, 30(16), 1-15 [10.3390/molecules30163345].
Stile, R.; Montroni, D.; Giuri, D.; Tomasini, C.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1022897
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact