Next-generation sequencing has overturned the dogma of biliary sterility, revealing low-biomass microbiota along the gut–biliary axis with metabolic and immunologic effects. This review synthesizes evidence on composition, function, and routes of colonization across benign and malignant disease. In cholelithiasis, Proteobacteria- and Firmicutes-rich consortia provide β-glucuronidase, phospholipase A2, and bile salt hydrolase, driving bile supersaturation, nucleation, and recurrence. In primary sclerosing cholangitis, primary biliary cholangitis, and autoimmune hepatitis, intestinal dysbiosis and disturbed bile acid pools modulate pattern recognition receptors and bile acid signaling (FXR, TGR5), promote Th17 skewing, and injure cholangiocytes; bile frequently shows Enterococcus expansion linked to taurolithocholic acid. Distinct oncobiomes characterize cholangiocarcinoma subtypes; colibactin-positive Escherichia coli and intratumoral Gammaproteobacteria contribute to DNA damage and chemoresistance. In hepatocellular carcinoma, intratumoral microbial signatures correlate with tumor biology and prognosis. We critically appraise key methodological constraints—sampling route and post-sphincterotomy contamination, antibiotic prophylaxis, low biomass, and heterogeneous analytical pipelines—and outline a translational agenda: validated microbial/metabolomic biomarkers from bile, tissue, and stent biofilms; targeted modulation with selective antibiotics, engineered probiotics, fecal microbiota transplantation, and bile acid receptor modulators. Standardized protocols and spatial, multi-omic prospective studies are required to enable risk stratification and microbiota-informed therapeutics.
Meacci, D., Bruni, A., Cocquio, A., Dell'Anna, G., Mandarino, F.V., Marasco, G., et al. (2025). Microbial Landscapes of the Gut–Biliary Axis: Implications for Benign and Malignant Biliary Tract Diseases. MICROORGANISMS, 13(9), 1-21 [10.3390/microorganisms13091980].
Microbial Landscapes of the Gut–Biliary Axis: Implications for Benign and Malignant Biliary Tract Diseases
Meacci, DavidConceptualization
;Bruni, AngeloConceptualization
;Cocquio, AliceMethodology
;Marasco, GiovanniWriting – Review & Editing
;Cecinato, PaoloData Curation
;Barbara, GiovanniSupervision
;Zagari, Rocco MaurizioSupervision
2025
Abstract
Next-generation sequencing has overturned the dogma of biliary sterility, revealing low-biomass microbiota along the gut–biliary axis with metabolic and immunologic effects. This review synthesizes evidence on composition, function, and routes of colonization across benign and malignant disease. In cholelithiasis, Proteobacteria- and Firmicutes-rich consortia provide β-glucuronidase, phospholipase A2, and bile salt hydrolase, driving bile supersaturation, nucleation, and recurrence. In primary sclerosing cholangitis, primary biliary cholangitis, and autoimmune hepatitis, intestinal dysbiosis and disturbed bile acid pools modulate pattern recognition receptors and bile acid signaling (FXR, TGR5), promote Th17 skewing, and injure cholangiocytes; bile frequently shows Enterococcus expansion linked to taurolithocholic acid. Distinct oncobiomes characterize cholangiocarcinoma subtypes; colibactin-positive Escherichia coli and intratumoral Gammaproteobacteria contribute to DNA damage and chemoresistance. In hepatocellular carcinoma, intratumoral microbial signatures correlate with tumor biology and prognosis. We critically appraise key methodological constraints—sampling route and post-sphincterotomy contamination, antibiotic prophylaxis, low biomass, and heterogeneous analytical pipelines—and outline a translational agenda: validated microbial/metabolomic biomarkers from bile, tissue, and stent biofilms; targeted modulation with selective antibiotics, engineered probiotics, fecal microbiota transplantation, and bile acid receptor modulators. Standardized protocols and spatial, multi-omic prospective studies are required to enable risk stratification and microbiota-informed therapeutics.| File | Dimensione | Formato | |
|---|---|---|---|
|
microorganisms-13-01980.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
509.29 kB
Formato
Adobe PDF
|
509.29 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


