Closed-form expressions for the score vector and the Hessian matrix of the log-likelihood function are derived for mixtures ofmatrix-variate normal distributions. These results are obtained by exploiting properties of the trace operator and the Kronecker product, enabling fast and reliable computation of standard errors and eliminating the need for costly numerical differentiation. The advantages of the approach are highlighted through a comprehensive simulation study based on synthetic data under different scenarios.

Berrettini, M., Galimberti, G. (2025). Exact Score Vector and Hessian Matrix for Mixtures of Matrix‐Variate Normals. STATISTICAL ANALYSIS AND DATA MINING, 18(3 (June)), 1-6 [10.1002/sam.70030].

Exact Score Vector and Hessian Matrix for Mixtures of Matrix‐Variate Normals

Berrettini, Marco
;
Galimberti, Giuliano
2025

Abstract

Closed-form expressions for the score vector and the Hessian matrix of the log-likelihood function are derived for mixtures ofmatrix-variate normal distributions. These results are obtained by exploiting properties of the trace operator and the Kronecker product, enabling fast and reliable computation of standard errors and eliminating the need for costly numerical differentiation. The advantages of the approach are highlighted through a comprehensive simulation study based on synthetic data under different scenarios.
2025
Berrettini, M., Galimberti, G. (2025). Exact Score Vector and Hessian Matrix for Mixtures of Matrix‐Variate Normals. STATISTICAL ANALYSIS AND DATA MINING, 18(3 (June)), 1-6 [10.1002/sam.70030].
Berrettini, Marco; Galimberti, Giuliano
File in questo prodotto:
File Dimensione Formato  
Statistical Analysis and Data Mining An ASA Data Science Journal - 2025 - Berrettini - Exact Score Vector and Hessian.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 200.13 kB
Formato Adobe PDF
200.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1022416
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact