Quantile-based classifiers can classify high-dimensional observations by minimizing a discrepancy of an observation to a class based on suitable quantiles of the within-class distributions, corresponding to a unique percentage for all variables. The present work extends these classifiers by introducing a way to determine potentially different optimal percentages for different variables. Furthermore, a variable-wise scale parameter is introduced. A simple greedy algorithm to estimate the parameters is proposed. Their consistency in a nonparametric setting is proved. Experiments using artificially generated and real data confirm the potential of the quantile-based classifier with variable-wise parameters.

Berrettini, M., Hennig, C.M., Viroli, C. (2025). The quantile-based classifier with variable-wise parameters. CANADIAN JOURNAL OF STATISTICS, 53(2 (June)), 1-14 [10.1002/cjs.11837].

The quantile-based classifier with variable-wise parameters

Berrettini M.
;
Hennig C. M.;Viroli C.
2025

Abstract

Quantile-based classifiers can classify high-dimensional observations by minimizing a discrepancy of an observation to a class based on suitable quantiles of the within-class distributions, corresponding to a unique percentage for all variables. The present work extends these classifiers by introducing a way to determine potentially different optimal percentages for different variables. Furthermore, a variable-wise scale parameter is introduced. A simple greedy algorithm to estimate the parameters is proposed. Their consistency in a nonparametric setting is proved. Experiments using artificially generated and real data confirm the potential of the quantile-based classifier with variable-wise parameters.
2025
Berrettini, M., Hennig, C.M., Viroli, C. (2025). The quantile-based classifier with variable-wise parameters. CANADIAN JOURNAL OF STATISTICS, 53(2 (June)), 1-14 [10.1002/cjs.11837].
Berrettini, M.; Hennig, C. M.; Viroli, C.
File in questo prodotto:
File Dimensione Formato  
Can J Statistics - 2025 - Berrettini - The quantileâ based classifier with variableâ wise parameters.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1022216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact