Multidimensional indexes are ubiquitous, and popular, but present non negligible normative choices when it comes to attributing weights to their dimensions. This paper provides a more rigorous approach to the choice of weights by defining a set of desirable properties that weighting models should meet. It shows that Bayesian Networks is the only model across statistical, econometric, and machine learning computational models that meets these properties. An example with EU-SILC data illustrates this new approach highlighting its potential for policies.
Ceriani, L., Gigliarano, C., Verme, P. (2025). Optimizing data-driven weights in multidimensional indexes. ECONOMICS LETTERS, 255(September), 1-9 [10.1016/j.econlet.2025.112499].
Optimizing data-driven weights in multidimensional indexes
Verme, Paolo
2025
Abstract
Multidimensional indexes are ubiquitous, and popular, but present non negligible normative choices when it comes to attributing weights to their dimensions. This paper provides a more rigorous approach to the choice of weights by defining a set of desirable properties that weighting models should meet. It shows that Bayesian Networks is the only model across statistical, econometric, and machine learning computational models that meets these properties. An example with EU-SILC data illustrates this new approach highlighting its potential for policies.| File | Dimensione | Formato | |
|---|---|---|---|
|
EL-OptimizingWeights.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.72 MB
Formato
Adobe PDF
|
1.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


