Multidimensional indexes are ubiquitous, and popular, but present non negligible normative choices when it comes to attributing weights to their dimensions. This paper provides a more rigorous approach to the choice of weights by defining a set of desirable properties that weighting models should meet. It shows that Bayesian Networks is the only model across statistical, econometric, and machine learning computational models that meets these properties. An example with EU-SILC data illustrates this new approach highlighting its potential for policies.

Ceriani, L., Gigliarano, C., Verme, P. (2025). Optimizing data-driven weights in multidimensional indexes. ECONOMICS LETTERS, 255(September), 1-9 [10.1016/j.econlet.2025.112499].

Optimizing data-driven weights in multidimensional indexes

Verme, Paolo
2025

Abstract

Multidimensional indexes are ubiquitous, and popular, but present non negligible normative choices when it comes to attributing weights to their dimensions. This paper provides a more rigorous approach to the choice of weights by defining a set of desirable properties that weighting models should meet. It shows that Bayesian Networks is the only model across statistical, econometric, and machine learning computational models that meets these properties. An example with EU-SILC data illustrates this new approach highlighting its potential for policies.
2025
Ceriani, L., Gigliarano, C., Verme, P. (2025). Optimizing data-driven weights in multidimensional indexes. ECONOMICS LETTERS, 255(September), 1-9 [10.1016/j.econlet.2025.112499].
Ceriani, Lidia; Gigliarano, Chiara; Verme, Paolo
File in questo prodotto:
File Dimensione Formato  
EL-OptimizingWeights.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1021786
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact