Increasing attention is being dedicated by the NLP community to gender-fair practices, including emerging forms of non-binary language. Given the shift to the prompting paradigm for multiple tasks, direct comparisons between prompted and fine-tuned models in this context are lacking. We aim to fill this gap by comparing prompt engineering and fine-tuning techniques for gender-fair rewriting in Italian. We do so by framing a rewriting task where Italian gender-marked translations from English gender-ambiguous sentences are adapted into a gender-neutral alternative using direct non-binary language. We augment existing datasets with gender-neutral translations and conduct experiments to determine the best architecture and approach to complete such task, by fine-tuning and prompting seq2seq encoder-decoder and autoregressive decoder-only models. We show that smaller seq2seq models can reach good performance when fine-tuned, even with relatively little data; when it comes to prompts, including task demonstrations is crucial, and we find that chat-tuned models reach the best results in a few-shot setting. We achieve promising results, especially in contexts of limited data and resources.

Mainardi, P., Garcea, F., Alberto, B. (2025). Fine-Tuning vs Prompting Techniques for Gender-Fair Rewriting of Machine Translations. Association for Computational Linguistics [10.18653/v1/2025.gebnlp-1.28].

Fine-Tuning vs Prompting Techniques for Gender-Fair Rewriting of Machine Translations

Mainardi Paolo
Primo
;
Garcea Federico;Barrón-Cedeño Alberto
Ultimo
2025

Abstract

Increasing attention is being dedicated by the NLP community to gender-fair practices, including emerging forms of non-binary language. Given the shift to the prompting paradigm for multiple tasks, direct comparisons between prompted and fine-tuned models in this context are lacking. We aim to fill this gap by comparing prompt engineering and fine-tuning techniques for gender-fair rewriting in Italian. We do so by framing a rewriting task where Italian gender-marked translations from English gender-ambiguous sentences are adapted into a gender-neutral alternative using direct non-binary language. We augment existing datasets with gender-neutral translations and conduct experiments to determine the best architecture and approach to complete such task, by fine-tuning and prompting seq2seq encoder-decoder and autoregressive decoder-only models. We show that smaller seq2seq models can reach good performance when fine-tuned, even with relatively little data; when it comes to prompts, including task demonstrations is crucial, and we find that chat-tuned models reach the best results in a few-shot setting. We achieve promising results, especially in contexts of limited data and resources.
2025
Proceedings of the 6th Workshop on Gender Bias in Natural Language Processing (GeBNLP)
320
337
Mainardi, P., Garcea, F., Alberto, B. (2025). Fine-Tuning vs Prompting Techniques for Gender-Fair Rewriting of Machine Translations. Association for Computational Linguistics [10.18653/v1/2025.gebnlp-1.28].
Mainardi, Paolo; Garcea, Federico; Alberto, Barrón-Cedeño
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1021090
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact