We study the descent distribution over the set of centrosymmetric permu- tations that avoid a pattern of length 3. In the most puzzling case, namely, τ = 123 and n even, our main tool is a bijection that associates a Dyck pre􏰜x of length 2n to every centrosymmetric permutation in S_{2n} that avoids 123.

Marilena Barnabei, Flavio Bonetti, Matteo Silimbani (2010). The Eulerian numbers on restricted centrosymmetric permutations. PURE MATHEMATICS AND APPLICATIONS, 21(2), 99-118.

The Eulerian numbers on restricted centrosymmetric permutations

BARNABEI, MARILENA;BONETTI, FLAVIO;SILIMBANI, MATTEO
2010

Abstract

We study the descent distribution over the set of centrosymmetric permu- tations that avoid a pattern of length 3. In the most puzzling case, namely, τ = 123 and n even, our main tool is a bijection that associates a Dyck pre􏰜x of length 2n to every centrosymmetric permutation in S_{2n} that avoids 123.
2010
Marilena Barnabei, Flavio Bonetti, Matteo Silimbani (2010). The Eulerian numbers on restricted centrosymmetric permutations. PURE MATHEMATICS AND APPLICATIONS, 21(2), 99-118.
Marilena Barnabei; Flavio Bonetti; Matteo Silimbani
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/102099
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact