The effective action for quantum gravity coupled to matter contains corrections arising from the functional measure. We analyse the effect of such corrections for anisotropic self-gravitating compact objects described by means of the gravitational decoupling method applied to isotropic solutions of the Einstein field equations. In particular, we consider the Tolman IV solution of general relativity and show that quantum gravity effects can modify the effective energy density as well as the effective tangential and radial pressures. For a suitable choice of the mimicking constant, upper bounds on the quantum corrections can be driven by the surface redshift of the anisotropic compact stellar system obtained with the gravitational decoupling.

Casadio, R., Kuntz, I., Da Rocha, R. (2025). When gravitational decoupling and quantum gravity (re)unite. THE EUROPEAN PHYSICAL JOURNAL PLUS, 140(7), 1-21 [10.1140/epjp/s13360-025-06604-6].

When gravitational decoupling and quantum gravity (re)unite

Casadio, R.;
2025

Abstract

The effective action for quantum gravity coupled to matter contains corrections arising from the functional measure. We analyse the effect of such corrections for anisotropic self-gravitating compact objects described by means of the gravitational decoupling method applied to isotropic solutions of the Einstein field equations. In particular, we consider the Tolman IV solution of general relativity and show that quantum gravity effects can modify the effective energy density as well as the effective tangential and radial pressures. For a suitable choice of the mimicking constant, upper bounds on the quantum corrections can be driven by the surface redshift of the anisotropic compact stellar system obtained with the gravitational decoupling.
2025
Casadio, R., Kuntz, I., Da Rocha, R. (2025). When gravitational decoupling and quantum gravity (re)unite. THE EUROPEAN PHYSICAL JOURNAL PLUS, 140(7), 1-21 [10.1140/epjp/s13360-025-06604-6].
Casadio, R.; Kuntz, I.; Da Rocha, R.
File in questo prodotto:
File Dimensione Formato  
2403.13099v2.pdf

embargo fino al 26/07/2026

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per accesso libero gratuito
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1020111
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact