Beyond its immunological role, colostrum has emerged as a promising, non-invasive source of bioactive factors, including mesenchymal stem/stromal cells (MSCs). This study represents the first attempt to isolate and characterize MSCs from equine colostrum (C-MSCs) to assess their potential use in veterinary regenerative medicine. Colostrum (n = 6) was collected from mares immediately after their delivery and centrifuged, and the recovered cells were cultured under standard conditions. The C-MSCs displayed plastic adherence and a heterogeneous morphology, including spindle-shaped and epithelial-like cells. The population doubling time (PDT) values varied among the samples, and four out of six showed rapid proliferation (< 0.05). Spheroid formation assays revealed differences in cell–cell adhesion: four out of six samples formed stable spheroids within four days. A migration assay showed significant variability (p < 0.05): one out of six achieved complete wound closure within 72 h, whereas five out of six reached ~30% at 96 h. All samples were positive for adipogenic, chondrogenic, and osteogenic differentiation as shown via staining. RT-PCR confirmed MSC marker expression, while hematopoietic markers were absent. MHC-I expression was weak in five out of six samples, whereas MHC-II was consistently negative. These findings support equine colostrum as a viable MSC source, though its variability requires further validation with larger samples. Additional research is needed to investigate C-MSCs’ immunomodulatory properties and therapeutic potential.

Capone, A., Merlo, B., Begni, F., Iacono, E. (2025). Equine Colostrum-Derived Mesenchymal Stromal Cells: A Potential Resource for Veterinary Regenerative Medicine. VETERINARY SCIENCES, 12(7), 1-22 [10.3390/vetsci12070681].

Equine Colostrum-Derived Mesenchymal Stromal Cells: A Potential Resource for Veterinary Regenerative Medicine

Capone, Angelita
Primo
;
Merlo, Barbara
Secondo
;
Iacono, Eleonora
Ultimo
2025

Abstract

Beyond its immunological role, colostrum has emerged as a promising, non-invasive source of bioactive factors, including mesenchymal stem/stromal cells (MSCs). This study represents the first attempt to isolate and characterize MSCs from equine colostrum (C-MSCs) to assess their potential use in veterinary regenerative medicine. Colostrum (n = 6) was collected from mares immediately after their delivery and centrifuged, and the recovered cells were cultured under standard conditions. The C-MSCs displayed plastic adherence and a heterogeneous morphology, including spindle-shaped and epithelial-like cells. The population doubling time (PDT) values varied among the samples, and four out of six showed rapid proliferation (< 0.05). Spheroid formation assays revealed differences in cell–cell adhesion: four out of six samples formed stable spheroids within four days. A migration assay showed significant variability (p < 0.05): one out of six achieved complete wound closure within 72 h, whereas five out of six reached ~30% at 96 h. All samples were positive for adipogenic, chondrogenic, and osteogenic differentiation as shown via staining. RT-PCR confirmed MSC marker expression, while hematopoietic markers were absent. MHC-I expression was weak in five out of six samples, whereas MHC-II was consistently negative. These findings support equine colostrum as a viable MSC source, though its variability requires further validation with larger samples. Additional research is needed to investigate C-MSCs’ immunomodulatory properties and therapeutic potential.
2025
Capone, A., Merlo, B., Begni, F., Iacono, E. (2025). Equine Colostrum-Derived Mesenchymal Stromal Cells: A Potential Resource for Veterinary Regenerative Medicine. VETERINARY SCIENCES, 12(7), 1-22 [10.3390/vetsci12070681].
Capone, Angelita; Merlo, Barbara; Begni, Fabiana; Iacono, Eleonora
File in questo prodotto:
File Dimensione Formato  
vetsci-12-00681.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri
vetsci-12-00681-s001.zip

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.84 MB
Formato Zip File
1.84 MB Zip File Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1019751
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact