Beyond its immunological role, colostrum has emerged as a promising, non-invasive source of bioactive factors, including mesenchymal stem/stromal cells (MSCs). This study represents the first attempt to isolate and characterize MSCs from equine colostrum (C-MSCs) to assess their potential use in veterinary regenerative medicine. Colostrum (n = 6) was collected from mares immediately after their delivery and centrifuged, and the recovered cells were cultured under standard conditions. The C-MSCs displayed plastic adherence and a heterogeneous morphology, including spindle-shaped and epithelial-like cells. The population doubling time (PDT) values varied among the samples, and four out of six showed rapid proliferation (< 0.05). Spheroid formation assays revealed differences in cell–cell adhesion: four out of six samples formed stable spheroids within four days. A migration assay showed significant variability (p < 0.05): one out of six achieved complete wound closure within 72 h, whereas five out of six reached ~30% at 96 h. All samples were positive for adipogenic, chondrogenic, and osteogenic differentiation as shown via staining. RT-PCR confirmed MSC marker expression, while hematopoietic markers were absent. MHC-I expression was weak in five out of six samples, whereas MHC-II was consistently negative. These findings support equine colostrum as a viable MSC source, though its variability requires further validation with larger samples. Additional research is needed to investigate C-MSCs’ immunomodulatory properties and therapeutic potential.
Capone, A., Merlo, B., Begni, F., Iacono, E. (2025). Equine Colostrum-Derived Mesenchymal Stromal Cells: A Potential Resource for Veterinary Regenerative Medicine. VETERINARY SCIENCES, 12(7), 1-22 [10.3390/vetsci12070681].
Equine Colostrum-Derived Mesenchymal Stromal Cells: A Potential Resource for Veterinary Regenerative Medicine
Capone, AngelitaPrimo
;Merlo, BarbaraSecondo
;Iacono, Eleonora
Ultimo
2025
Abstract
Beyond its immunological role, colostrum has emerged as a promising, non-invasive source of bioactive factors, including mesenchymal stem/stromal cells (MSCs). This study represents the first attempt to isolate and characterize MSCs from equine colostrum (C-MSCs) to assess their potential use in veterinary regenerative medicine. Colostrum (n = 6) was collected from mares immediately after their delivery and centrifuged, and the recovered cells were cultured under standard conditions. The C-MSCs displayed plastic adherence and a heterogeneous morphology, including spindle-shaped and epithelial-like cells. The population doubling time (PDT) values varied among the samples, and four out of six showed rapid proliferation (< 0.05). Spheroid formation assays revealed differences in cell–cell adhesion: four out of six samples formed stable spheroids within four days. A migration assay showed significant variability (p < 0.05): one out of six achieved complete wound closure within 72 h, whereas five out of six reached ~30% at 96 h. All samples were positive for adipogenic, chondrogenic, and osteogenic differentiation as shown via staining. RT-PCR confirmed MSC marker expression, while hematopoietic markers were absent. MHC-I expression was weak in five out of six samples, whereas MHC-II was consistently negative. These findings support equine colostrum as a viable MSC source, though its variability requires further validation with larger samples. Additional research is needed to investigate C-MSCs’ immunomodulatory properties and therapeutic potential.| File | Dimensione | Formato | |
|---|---|---|---|
|
vetsci-12-00681.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.94 MB
Formato
Adobe PDF
|
1.94 MB | Adobe PDF | Visualizza/Apri |
|
vetsci-12-00681-s001.zip
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.84 MB
Formato
Zip File
|
1.84 MB | Zip File | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


