We establish the local boundedness of the local minimizers $u:\Omega\rightarrow\mathbb{R}^{m}$ of non-uniformly elliptic integrals of the form $\int_{\Omega}f(x,Dv)\,dx$, where $\Omega$ is a bounded open subset of $\mathbb{R}^{n}$ ($n\geq2)$ and the integrand satisfies anisotropic growth conditions of the type $\sum_{i=1}^{n}\lambda_{i}(x)|\xi_{i}|^{p_{i}}\le f(x,\xi)\le\mu(x)\left\{ 1+|\xi|^{q}\right\}$ for some exponents $q\geq p_{i}>1$ and with non-negative functions $\lambda_{i},\mu$ fulfilling suitable summability assumptions. The main novelties here are the degenerate and anisotropic behaviour of the integrand and the fact that we also address the case of vectorial minimizers ($m>1$). Our proof is based on the celebrated Moser iteration technique and employs an embedding result for anisotropic Sobolev spaces.

Ambrosio, P., Cupini, G., Mascolo, E. (2025). Regularity of vectorial minimizers for non-uniformly elliptic anisotropic integrals. NONLINEAR ANALYSIS, 261, 1-18 [10.1016/j.na.2025.113897].

Regularity of vectorial minimizers for non-uniformly elliptic anisotropic integrals

Ambrosio, Pasquale
Primo
;
Cupini, Giovanni
Secondo
;
Mascolo, Elvira
Ultimo
2025

Abstract

We establish the local boundedness of the local minimizers $u:\Omega\rightarrow\mathbb{R}^{m}$ of non-uniformly elliptic integrals of the form $\int_{\Omega}f(x,Dv)\,dx$, where $\Omega$ is a bounded open subset of $\mathbb{R}^{n}$ ($n\geq2)$ and the integrand satisfies anisotropic growth conditions of the type $\sum_{i=1}^{n}\lambda_{i}(x)|\xi_{i}|^{p_{i}}\le f(x,\xi)\le\mu(x)\left\{ 1+|\xi|^{q}\right\}$ for some exponents $q\geq p_{i}>1$ and with non-negative functions $\lambda_{i},\mu$ fulfilling suitable summability assumptions. The main novelties here are the degenerate and anisotropic behaviour of the integrand and the fact that we also address the case of vectorial minimizers ($m>1$). Our proof is based on the celebrated Moser iteration technique and employs an embedding result for anisotropic Sobolev spaces.
2025
Ambrosio, P., Cupini, G., Mascolo, E. (2025). Regularity of vectorial minimizers for non-uniformly elliptic anisotropic integrals. NONLINEAR ANALYSIS, 261, 1-18 [10.1016/j.na.2025.113897].
Ambrosio, Pasquale; Cupini, Giovanni; Mascolo, Elvira
File in questo prodotto:
File Dimensione Formato  
Regularity of vectorial minimizers for non-uniformly elliptic anisotropic integrals.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1019191
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact