We consider a bilevel optimisation strategy based on normalised residual whiteness loss for estimating the weighted total variation parameter maps for denoising images corrupted by additive white Gaussian noise. Compared to supervised and semi-supervised approaches relying on prior knowledge of (approximate) reference data and/or information on the noise magnitude, the proposal is fully unsupervised. To avoid noise overfitting an early stopping strategy is used, relying on simple statistics of optimal performances on a set of natural images. Numerical results comparing the supervised/unsupervised procedures for scalar/pixel-dependent parameter maps are shown.

Pragliola, M., Calatroni, L., Lanza, A. (2025). Whiteness-Based Bilevel Estimation of Weighted TV Parameter Maps for Image Denoising. Springer Science and Business Media Deutschland GmbH [10.1007/978-3-031-92366-1_13].

Whiteness-Based Bilevel Estimation of Weighted TV Parameter Maps for Image Denoising

Lanza, Alessandro
2025

Abstract

We consider a bilevel optimisation strategy based on normalised residual whiteness loss for estimating the weighted total variation parameter maps for denoising images corrupted by additive white Gaussian noise. Compared to supervised and semi-supervised approaches relying on prior knowledge of (approximate) reference data and/or information on the noise magnitude, the proposal is fully unsupervised. To avoid noise overfitting an early stopping strategy is used, relying on simple statistics of optimal performances on a set of natural images. Numerical results comparing the supervised/unsupervised procedures for scalar/pixel-dependent parameter maps are shown.
2025
Scale Space and Variational Methods in Computer Vision. SSVM 2025
159
172
Pragliola, M., Calatroni, L., Lanza, A. (2025). Whiteness-Based Bilevel Estimation of Weighted TV Parameter Maps for Image Denoising. Springer Science and Business Media Deutschland GmbH [10.1007/978-3-031-92366-1_13].
Pragliola, Monica; Calatroni, Luca; Lanza, Alessandro
File in questo prodotto:
File Dimensione Formato  
Conf_Pragliola_et_al_post_review.pdf

embargo fino al 16/05/2026

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per accesso libero gratuito
Dimensione 4.14 MB
Formato Adobe PDF
4.14 MB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1017455
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact