We consider a bilevel optimisation strategy based on normalised residual whiteness loss for estimating the weighted total variation parameter maps for denoising images corrupted by additive white Gaussian noise. Compared to supervised and semi-supervised approaches relying on prior knowledge of (approximate) reference data and/or information on the noise magnitude, the proposal is fully unsupervised. To avoid noise overfitting an early stopping strategy is used, relying on simple statistics of optimal performances on a set of natural images. Numerical results comparing the supervised/unsupervised procedures for scalar/pixel-dependent parameter maps are shown.
Pragliola, M., Calatroni, L., Lanza, A. (2025). Whiteness-Based Bilevel Estimation of Weighted TV Parameter Maps for Image Denoising. Springer Science and Business Media Deutschland GmbH [10.1007/978-3-031-92366-1_13].
Whiteness-Based Bilevel Estimation of Weighted TV Parameter Maps for Image Denoising
Lanza, Alessandro
2025
Abstract
We consider a bilevel optimisation strategy based on normalised residual whiteness loss for estimating the weighted total variation parameter maps for denoising images corrupted by additive white Gaussian noise. Compared to supervised and semi-supervised approaches relying on prior knowledge of (approximate) reference data and/or information on the noise magnitude, the proposal is fully unsupervised. To avoid noise overfitting an early stopping strategy is used, relying on simple statistics of optimal performances on a set of natural images. Numerical results comparing the supervised/unsupervised procedures for scalar/pixel-dependent parameter maps are shown.| File | Dimensione | Formato | |
|---|---|---|---|
|
Conf_Pragliola_et_al_post_review.pdf
embargo fino al 16/05/2026
Tipo:
Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza:
Licenza per accesso libero gratuito
Dimensione
4.14 MB
Formato
Adobe PDF
|
4.14 MB | Adobe PDF | Visualizza/Apri Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


