In this work, the seasonal performance of a dual-source heat pump (DSHP) prototype, able to exploit aerothermal and geothermal energy, was assessed experimentally. The unit, operated under the working conditions of two representative heating days (RDs), was coupled to a real undersized borehole heat exchanger (BHE) field. A distributed temperature sensing (DTS) system, installed in the borefield, was adopted to monitor the ground thermal response during the DSHP operation. In order to compare the DSHP performance to that of a traditional air-source heat pump (ASHP), the same RDs were reproduced in the test rig operating the DSHP in air mode only, and then exploiting both heat sources. Comparing the efficiency of the DSHP and ASHP, it is noticed that the additional exploitation of geothermal energy can increase system efficiency by up to 3% on a seasonal basis. Indeed, the DSHP coupled to an undersized BHE can operate in ground mode until it is energy-efficient; then, the required building load is supplied by exploiting the aerothermal energy source. In this way, the BHE investment cost can be reduced, and the ground temperature drift originating from unbalanced building loads can be limited through the smart exploitation of both sources.
Natale, C., Dongellini, M., Naldi, C., Morini, G.L. (2025). Evaluation of the Seasonal Energy Performance of a Dual-Source Heat Pump Through Dynamic Experimental Tests. ENERGIES, 18(10), 1-20 [10.3390/en18102532].
Evaluation of the Seasonal Energy Performance of a Dual-Source Heat Pump Through Dynamic Experimental Tests
Natale, ChristianPrimo
;Dongellini, MatteoSecondo
;Naldi, Claudia
;Morini, Gian LucaUltimo
2025
Abstract
In this work, the seasonal performance of a dual-source heat pump (DSHP) prototype, able to exploit aerothermal and geothermal energy, was assessed experimentally. The unit, operated under the working conditions of two representative heating days (RDs), was coupled to a real undersized borehole heat exchanger (BHE) field. A distributed temperature sensing (DTS) system, installed in the borefield, was adopted to monitor the ground thermal response during the DSHP operation. In order to compare the DSHP performance to that of a traditional air-source heat pump (ASHP), the same RDs were reproduced in the test rig operating the DSHP in air mode only, and then exploiting both heat sources. Comparing the efficiency of the DSHP and ASHP, it is noticed that the additional exploitation of geothermal energy can increase system efficiency by up to 3% on a seasonal basis. Indeed, the DSHP coupled to an undersized BHE can operate in ground mode until it is energy-efficient; then, the required building load is supplied by exploiting the aerothermal energy source. In this way, the BHE investment cost can be reduced, and the ground temperature drift originating from unbalanced building loads can be limited through the smart exploitation of both sources.| File | Dimensione | Formato | |
|---|---|---|---|
|
Natale_Energies 2025.pdf
accesso aperto
Descrizione: Versione pdf editoriale
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
4.08 MB
Formato
Adobe PDF
|
4.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


