The Prediction and Recognition of Cognitive Decline through Spontaneous Speech (PROCESS) Signal Processing Grand Challenge focuses on detecting dementia by analyzing spontaneous speech production. The challenge proposes a classification task to distinguish between subjects categorized as healthy controls, mild cognitive impairment, and dementia. Our team tackled this task by leveraging Digital Linguistic Biomarkers (DLBs) extracted from speech. Our system outperformed over 100 competing systems, earning us first place in the classification task.

Zhang, S., Khlif, N., Ferro, M., Gagliardi, G., Tamburini, F. (2025). Cognitive Decline Detection using DLB Extraction Pipelines. IEEE [10.1109/ICASSP49660.2025.10890866].

Cognitive Decline Detection using DLB Extraction Pipelines

Gagliardi G.;Tamburini F.
2025

Abstract

The Prediction and Recognition of Cognitive Decline through Spontaneous Speech (PROCESS) Signal Processing Grand Challenge focuses on detecting dementia by analyzing spontaneous speech production. The challenge proposes a classification task to distinguish between subjects categorized as healthy controls, mild cognitive impairment, and dementia. Our team tackled this task by leveraging Digital Linguistic Biomarkers (DLBs) extracted from speech. Our system outperformed over 100 competing systems, earning us first place in the classification task.
2025
ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
1
2
Zhang, S., Khlif, N., Ferro, M., Gagliardi, G., Tamburini, F. (2025). Cognitive Decline Detection using DLB Extraction Pipelines. IEEE [10.1109/ICASSP49660.2025.10890866].
Zhang, S.; Khlif, N.; Ferro, M.; Gagliardi, G.; Tamburini, F.
File in questo prodotto:
File Dimensione Formato  
challenge.pdf

accesso aperto

Descrizione: Contributo in Atti di Convegno
Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per accesso libero gratuito
Dimensione 122.66 kB
Formato Adobe PDF
122.66 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1017371
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact