Let 1<∞. In this article we establish an L^p-Hodge decomposition theorem on sub-Riemannian compact contact manifolds without boundary, related to the Rumin complex of differential forms. Given an Lp- Rumin's form, we adopt an approach in the spirit of Morrey's book [26] (further performed in [18]) to obtain a decomposition with higher regular “primitives” i.e. that belong to suitable Sobolev classes. Our proof relies on recent results obtained in [4] and [6].

Baldi, A., Rosa, A. (2025). L^p-Hodge decomposition with Sobolev classes in sub-Riemannian contact manifolds. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 552(1), 1-36 [10.1016/j.jmaa.2025.129739].

L^p-Hodge decomposition with Sobolev classes in sub-Riemannian contact manifolds

Baldi, Annalisa
;
2025

Abstract

Let 1<∞. In this article we establish an L^p-Hodge decomposition theorem on sub-Riemannian compact contact manifolds without boundary, related to the Rumin complex of differential forms. Given an Lp- Rumin's form, we adopt an approach in the spirit of Morrey's book [26] (further performed in [18]) to obtain a decomposition with higher regular “primitives” i.e. that belong to suitable Sobolev classes. Our proof relies on recent results obtained in [4] and [6].
2025
Baldi, A., Rosa, A. (2025). L^p-Hodge decomposition with Sobolev classes in sub-Riemannian contact manifolds. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 552(1), 1-36 [10.1016/j.jmaa.2025.129739].
Baldi, Annalisa; Rosa, Alessandro
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022247X25005207-main.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1016914
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact