We give a brief and concise guide for the analysis of the local behavior of the elements of local and nonlocal homogeneous De Giorgi classes: local boundedness, local H¨older continuity and Harnacktype inequalities. In the local case, we promote a simplified itinerary in the classic theory, propaedeutic for the successive part; while in the nonlocal case, we gather recent new developments into an unitary and concise framework. Employing a suitable definition of De Giorgi classes, we show a new proof of the Harnack inequality, way easier than in the local case, that bypasses any sort of Krylov-Safonov argument or cube decomposition.

Cassanello, F., Ciani, S., Majrashi, B., And Vincenzo Vespri, B. (2025). Local Vs Nonlocal De Giorgi Classes: A brief guide in the homogeneous case. RENDICONTI DELL'ISTITUTO DI MATEMATICA DELL'UNIVERSITÀ DI TRIESTE, 57, 1-50.

Local Vs Nonlocal De Giorgi Classes: A brief guide in the homogeneous case

Simone Ciani;
2025

Abstract

We give a brief and concise guide for the analysis of the local behavior of the elements of local and nonlocal homogeneous De Giorgi classes: local boundedness, local H¨older continuity and Harnacktype inequalities. In the local case, we promote a simplified itinerary in the classic theory, propaedeutic for the successive part; while in the nonlocal case, we gather recent new developments into an unitary and concise framework. Employing a suitable definition of De Giorgi classes, we show a new proof of the Harnack inequality, way easier than in the local case, that bypasses any sort of Krylov-Safonov argument or cube decomposition.
2025
Cassanello, F., Ciani, S., Majrashi, B., And Vincenzo Vespri, B. (2025). Local Vs Nonlocal De Giorgi Classes: A brief guide in the homogeneous case. RENDICONTI DELL'ISTITUTO DI MATEMATICA DELL'UNIVERSITÀ DI TRIESTE, 57, 1-50.
Cassanello, Filippo; Ciani, Simone; Majrashi, Bashayer; And Vincenzo Vespri, Bashayer
File in questo prodotto:
File Dimensione Formato  
RIMUT_2025_9_Cassanello_DOI.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 593.25 kB
Formato Adobe PDF
593.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1016674
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact