Guanine quadruplexes (G4s) are non-canonical DNA structures that can trigger micronuclei (MNi). Mechanisms of micronuclei formation by G4s are not fully understood. Here, we show that G4 stabilization can trigger cell-cycle-phase-specific mechanisms of replication fork stalling and DNA synthesis restart dependent on translesion synthesis (TLS) DNA polymerases (Pols). Fork stalling is caused by G-loops and high transcription during early S only. Moreover, while induction of micronuclei is dependent on DNA Pol η throughout S phase, primase and DNA-directed polymerase (PrimPol) is required in late S only. DNA breakage is not an immediate response to stabilized G4s but rather a consequence of persistent G4-mediated replication stress. Thus, different modes of fork stalling and restart, based on genomic context and TLS Pols, avoid immediate DNA breakage at stalled forks but at the expense of a risk of later mitotic chromosomal instability. The insights can lead to the development of more effective therapies for cancer and neurological diseases.
Pepe, S., Guerra, F., Russo, M., Duardo, R.C., Capranico, G. (2025). Genomic context influences translesion synthesis DNA polymerase-dependent mechanisms of micronuclei induction by G-quadruplexes. CELL REPORTS, 44(5), 1-23 [10.1016/j.celrep.2025.115706].
Genomic context influences translesion synthesis DNA polymerase-dependent mechanisms of micronuclei induction by G-quadruplexes
Pepe, SimonaPrimo
;Guerra, Federico;Russo, Marco;Duardo, Renée C.;Capranico, Giovanni
Ultimo
2025
Abstract
Guanine quadruplexes (G4s) are non-canonical DNA structures that can trigger micronuclei (MNi). Mechanisms of micronuclei formation by G4s are not fully understood. Here, we show that G4 stabilization can trigger cell-cycle-phase-specific mechanisms of replication fork stalling and DNA synthesis restart dependent on translesion synthesis (TLS) DNA polymerases (Pols). Fork stalling is caused by G-loops and high transcription during early S only. Moreover, while induction of micronuclei is dependent on DNA Pol η throughout S phase, primase and DNA-directed polymerase (PrimPol) is required in late S only. DNA breakage is not an immediate response to stabilized G4s but rather a consequence of persistent G4-mediated replication stress. Thus, different modes of fork stalling and restart, based on genomic context and TLS Pols, avoid immediate DNA breakage at stalled forks but at the expense of a risk of later mitotic chromosomal instability. The insights can lead to the development of more effective therapies for cancer and neurological diseases.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


