The cost functions considered are c(x,y)=h(x -y), where h∈C^2(R^n) is homogeneous of degree p≥2 with a positive definite Hessian in the unit sphere. We study multivalued monotone maps with respect to that cost and establish that they are single-valued almost everywhere. Further consequences are then deduced.

Gutiérrez, C.E., Montanari, A. (2025). Fine properties of monotone maps arising in optimal transport for non-quadratic costs. ANALYSIS AND GEOMETRY IN METRIC SPACES, 13(1), 1-14 [10.1515/agms-2025-0023].

Fine properties of monotone maps arising in optimal transport for non-quadratic costs

Montanari, Annamaria
2025

Abstract

The cost functions considered are c(x,y)=h(x -y), where h∈C^2(R^n) is homogeneous of degree p≥2 with a positive definite Hessian in the unit sphere. We study multivalued monotone maps with respect to that cost and establish that they are single-valued almost everywhere. Further consequences are then deduced.
2025
Gutiérrez, C.E., Montanari, A. (2025). Fine properties of monotone maps arising in optimal transport for non-quadratic costs. ANALYSIS AND GEOMETRY IN METRIC SPACES, 13(1), 1-14 [10.1515/agms-2025-0023].
Gutiérrez, Cristian E.; Montanari, Annamaria
File in questo prodotto:
File Dimensione Formato  
10.1515_agms-2025-0023.pdf

accesso aperto

Descrizione: pdf
Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 3.31 MB
Formato Adobe PDF
3.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1015996
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact