The cost functions considered are c(x,y)=h(x -y), where h∈C^2(R^n) is homogeneous of degree p≥2 with a positive definite Hessian in the unit sphere. We study multivalued monotone maps with respect to that cost and establish that they are single-valued almost everywhere. Further consequences are then deduced.
Gutiérrez, C.E., Montanari, A. (2025). Fine properties of monotone maps arising in optimal transport for non-quadratic costs. ANALYSIS AND GEOMETRY IN METRIC SPACES, 13(1), 1-14 [10.1515/agms-2025-0023].
Fine properties of monotone maps arising in optimal transport for non-quadratic costs
Montanari, Annamaria
2025
Abstract
The cost functions considered are c(x,y)=h(x -y), where h∈C^2(R^n) is homogeneous of degree p≥2 with a positive definite Hessian in the unit sphere. We study multivalued monotone maps with respect to that cost and establish that they are single-valued almost everywhere. Further consequences are then deduced.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
10.1515_agms-2025-0023.pdf
accesso aperto
Descrizione: pdf
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
3.31 MB
Formato
Adobe PDF
|
3.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.