In pursuit of precise and fast theory predictions for the LHC, we present an implementation of the MadNIS method in the MadGraph event generator. A series of improvements in MadNIS further enhance its efficiency and speed. We validate this implementation for realistic partonic processes and find significant gains from using modern machine learning in event generators.

Heimel, T., Huetsch, N., Maltoni, F., Mattelaer, O., Plehn, T., Winterhalder, R. (2024). The MadNIS reloaded. SCIPOST PHYSICS, 17(1), 1-23 [10.21468/scipostphys.17.1.023].

The MadNIS reloaded

Maltoni, Fabio;
2024

Abstract

In pursuit of precise and fast theory predictions for the LHC, we present an implementation of the MadNIS method in the MadGraph event generator. A series of improvements in MadNIS further enhance its efficiency and speed. We validate this implementation for realistic partonic processes and find significant gains from using modern machine learning in event generators.
2024
Heimel, T., Huetsch, N., Maltoni, F., Mattelaer, O., Plehn, T., Winterhalder, R. (2024). The MadNIS reloaded. SCIPOST PHYSICS, 17(1), 1-23 [10.21468/scipostphys.17.1.023].
Heimel, Theo; Huetsch, Nathan; Maltoni, Fabio; Mattelaer, Olivier; Plehn, Tilman; Winterhalder, Ramon
File in questo prodotto:
File Dimensione Formato  
SciPostPhys_17_1_023.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 710.88 kB
Formato Adobe PDF
710.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1015870
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 16
social impact