This study highlights the limitations of common data transformations used to fit transcriptomic data, particularly single-cell RNAseq data, into a normal distribution. Through simulation, it demonstrates that such transformations can distort graphical structures and affect the interpretation of results in two-sample problems, emphasizing the need for specialized methods tailored for count data.

Banzato, E., Risso, D., Chiogna, M., Djordjilović, V. (2025). Data Transformation and Its Validity in a Two-Sample Problem: An Illustration Based on Graphical Models. Springer Nature [10.1007/978-3-031-64431-3_21].

Data Transformation and Its Validity in a Two-Sample Problem: An Illustration Based on Graphical Models

Erika Banzato
;
Monica Chiogna;
2025

Abstract

This study highlights the limitations of common data transformations used to fit transcriptomic data, particularly single-cell RNAseq data, into a normal distribution. Through simulation, it demonstrates that such transformations can distort graphical structures and affect the interpretation of results in two-sample problems, emphasizing the need for specialized methods tailored for count data.
2025
Methodological and Applied Statistics and Demography III
121
126
Banzato, E., Risso, D., Chiogna, M., Djordjilović, V. (2025). Data Transformation and Its Validity in a Two-Sample Problem: An Illustration Based on Graphical Models. Springer Nature [10.1007/978-3-031-64431-3_21].
Banzato, Erika; Risso, Davide; Chiogna, Monica; Djordjilović, Vera
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1015426
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact