In this article, we study the effect of the Hardy potential on existence, uniqueness, and optimal summability of solutions of the mixed local-nonlocal elliptic problem where ω is a bounded domain in containing the origin and δ3 > 0. In particular, we will discuss the existence, non-existence, and uniqueness of solutions in terms of the summability of f and of the value of the parameter δ3.

Biagi, S., Esposito, F., Montoro, L., Vecchi, E. (2025). On mixed local–nonlocal problems with Hardy potential. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS, ON LINE FIRST, 1-34 [10.1017/prm.2025.28].

On mixed local–nonlocal problems with Hardy potential

Biagi, Stefano;Vecchi, Eugenio
2025

Abstract

In this article, we study the effect of the Hardy potential on existence, uniqueness, and optimal summability of solutions of the mixed local-nonlocal elliptic problem where ω is a bounded domain in containing the origin and δ3 > 0. In particular, we will discuss the existence, non-existence, and uniqueness of solutions in terms of the summability of f and of the value of the parameter δ3.
2025
Biagi, S., Esposito, F., Montoro, L., Vecchi, E. (2025). On mixed local–nonlocal problems with Hardy potential. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS, ON LINE FIRST, 1-34 [10.1017/prm.2025.28].
Biagi, Stefano; Esposito, Francesco; Montoro, Luigi; Vecchi, Eugenio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1014953
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact