Neural networks are typically black-boxes that remain opaque with regards to their decision mechanisms. Several works in the literature have proposed post-hoc explanation methods to alleviate this issue. This paper proposes LMAC-TD, a post-hoc explanation method that trains a decoder to produce explanations directly in the time domain. This methodology builds upon the foundation of L-MAC, Listenable Maps for Audio Classifiers, a method that produces faithful and listenable explanations. We incorporate SepFormer, a popular transformer-based time-domain source separation architecture. We show through a user study that LMAC-TD significantly improves the audio quality of the produced explanations while not sacrificing from faithfulness.

Mancini, E., Paissan, F., Ravanelli, M., Subakan, C. (2025). LMAC-TD: Producing Time Domain Explanations for Audio Classifiers. IEEE [10.1109/ICASSP49660.2025.10890448].

LMAC-TD: Producing Time Domain Explanations for Audio Classifiers

Eleonora Mancini
Primo
Investigation
;
2025

Abstract

Neural networks are typically black-boxes that remain opaque with regards to their decision mechanisms. Several works in the literature have proposed post-hoc explanation methods to alleviate this issue. This paper proposes LMAC-TD, a post-hoc explanation method that trains a decoder to produce explanations directly in the time domain. This methodology builds upon the foundation of L-MAC, Listenable Maps for Audio Classifiers, a method that produces faithful and listenable explanations. We incorporate SepFormer, a popular transformer-based time-domain source separation architecture. We show through a user study that LMAC-TD significantly improves the audio quality of the produced explanations while not sacrificing from faithfulness.
2025
ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
1
5
Mancini, E., Paissan, F., Ravanelli, M., Subakan, C. (2025). LMAC-TD: Producing Time Domain Explanations for Audio Classifiers. IEEE [10.1109/ICASSP49660.2025.10890448].
Mancini, Eleonora; Paissan, Francesco; Ravanelli, Mirco; Subakan, Cem
File in questo prodotto:
File Dimensione Formato  
ICASSP_25_LMACTD.pdf

embargo fino al 06/03/2026

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per accesso libero gratuito
Dimensione 252.67 kB
Formato Adobe PDF
252.67 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1014390
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact