We introduce anisotropic Hölder spaces that are useful for studying the regularity theory for non-local kinetic operators. The Hölder spaces are defined in terms of an anisotropic distance relevant to the Galilean geometric structure, with respect to which the operator is invariant. We prove an intrinsic Taylor-like formula, whose remainder is bounded in terms of the anisotropic distance of the Galilean structure. Our achievements naturally extend analogous known results for purely differential operators on Lie groups.

Manfredini, M., Pagliarani, S., Polidoro, S. (2025). Intrinsic Hölder spaces for fractional kinetic operators. JOURNAL OF EVOLUTION EQUATIONS, 25(2), 1-22 [10.1007/s00028-025-01062-0].

Intrinsic Hölder spaces for fractional kinetic operators

Manfredini, Maria;Pagliarani, Stefano;Polidoro, Sergio
2025

Abstract

We introduce anisotropic Hölder spaces that are useful for studying the regularity theory for non-local kinetic operators. The Hölder spaces are defined in terms of an anisotropic distance relevant to the Galilean geometric structure, with respect to which the operator is invariant. We prove an intrinsic Taylor-like formula, whose remainder is bounded in terms of the anisotropic distance of the Galilean structure. Our achievements naturally extend analogous known results for purely differential operators on Lie groups.
2025
Manfredini, M., Pagliarani, S., Polidoro, S. (2025). Intrinsic Hölder spaces for fractional kinetic operators. JOURNAL OF EVOLUTION EQUATIONS, 25(2), 1-22 [10.1007/s00028-025-01062-0].
Manfredini, Maria; Pagliarani, Stefano; Polidoro, Sergio
File in questo prodotto:
File Dimensione Formato  
s00028-025-01062-0 (1).pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 483.69 kB
Formato Adobe PDF
483.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1013261
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact