Miniaturization has been an essential ingredient in the outstanding progress of information technology over the past fifty years. The next, perhaps ultimate, limit of miniaturization is that of molecules, which are the smallest entities with definite size, shape, and properties. Recently, great effort has been devoted to design and investigate molecular-level systems that are capable of transferring, processing, and storing information in binary form. Some of these nanoscale devices can, in fact, perform logic operations of remarkable complexity. This research - although far from being transferred into technology - is attracting interest, as the nanometer realm seems to be out of reach for the "top-down" techniques currently available to microelectronics industry. Moreover, such studies introduce new concepts in the "old" field of chemistry and stimulate the ingenuity of researchers engaged in the "bottom-up" approach to nanotechnology.

Balzani, V., Credi, A., Venturi, M. (2003). Molecular logic circuits. CHEMPHYSCHEM, 4(1), 49-59 [10.1002/cphc.200390007].

Molecular logic circuits

Balzani V.;Credi A.;Venturi M.
2003

Abstract

Miniaturization has been an essential ingredient in the outstanding progress of information technology over the past fifty years. The next, perhaps ultimate, limit of miniaturization is that of molecules, which are the smallest entities with definite size, shape, and properties. Recently, great effort has been devoted to design and investigate molecular-level systems that are capable of transferring, processing, and storing information in binary form. Some of these nanoscale devices can, in fact, perform logic operations of remarkable complexity. This research - although far from being transferred into technology - is attracting interest, as the nanometer realm seems to be out of reach for the "top-down" techniques currently available to microelectronics industry. Moreover, such studies introduce new concepts in the "old" field of chemistry and stimulate the ingenuity of researchers engaged in the "bottom-up" approach to nanotechnology.
2003
Balzani, V., Credi, A., Venturi, M. (2003). Molecular logic circuits. CHEMPHYSCHEM, 4(1), 49-59 [10.1002/cphc.200390007].
Balzani, V.; Credi, A.; Venturi, M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1013213
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 266
  • ???jsp.display-item.citation.isi??? 249
social impact