We consider an unsupervised bilevel optimization strategy for learning regularization parameters in the context of imaging inverse problems in the presence of additive white Gaussian noise. Compared to supervised and weakly-supervised metrics relying either on the prior knowledge of reference data and/or on some (partial) knowledge on the noise statistics, the proposed approach optimizes the whiteness of the residual between the observed data and the observation model with no need of ground-truth data. We validate the approach on standard Total Variation-regularized image deconvolution problems which show that the proposed quality metric provides estimates close to the mean-square error oracle and to discrepancy-based principles.

Santambrogio, C., Pragliola, M., Lanza, A., Donatelli, M., Calatroni, L. (2024). Whiteness-based bilevel learning of regularization parameters in imaging [10.23919/eusipco63174.2024.10715121].

Whiteness-based bilevel learning of regularization parameters in imaging

Lanza A.;
2024

Abstract

We consider an unsupervised bilevel optimization strategy for learning regularization parameters in the context of imaging inverse problems in the presence of additive white Gaussian noise. Compared to supervised and weakly-supervised metrics relying either on the prior knowledge of reference data and/or on some (partial) knowledge on the noise statistics, the proposed approach optimizes the whiteness of the residual between the observed data and the observation model with no need of ground-truth data. We validate the approach on standard Total Variation-regularized image deconvolution problems which show that the proposed quality metric provides estimates close to the mean-square error oracle and to discrepancy-based principles.
2024
Proceedings of the 32nd European Signal Processing Conference (EUSIPCO 2024)
1801
1805
Santambrogio, C., Pragliola, M., Lanza, A., Donatelli, M., Calatroni, L. (2024). Whiteness-based bilevel learning of regularization parameters in imaging [10.23919/eusipco63174.2024.10715121].
Santambrogio, C.; Pragliola, M.; Lanza, A.; Donatelli, M.; Calatroni, L.
File in questo prodotto:
File Dimensione Formato  
Conf_Santambrogio_et_al_post_review.pdf

accesso aperto

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per accesso libero gratuito
Dimensione 722 kB
Formato Adobe PDF
722 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1012718
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact