In the context of 6G architecture development, the concept of a softwarized (orchestration) continuum is a key pillar. Nevertheless, achieving complete softwarization of network functionalities, tasks, and operations presents inherent challenges, leading to critical trade-offs and limitations. This article explores a novel approach to address these issues by integrating quantum technologies and the Physical Layer Service Integration (PLSI) paradigm. Specifically, we propose the formulation and analysis of network synchronization as a quantum PLSI problem. Our study evaluates synchronization time offset in both conventional Precision Time Protocol (PTP) and quantum-based approaches within the network. We investigate the impact of various network conditions on the precision of PTP synchronization, ranging from nanoseconds under ideal circumstances to microseconds when utilizing virtual network devices. Further, we perform a simulation to generate frequency-entangled photon pairs to access nonlocal temporal correlations and calculate the time offsets. Our findings reveal that entanglement-based PLSI for network synchronization achieves precision at the picosecond level. These results emphasises the high precision achievable by interpreting the network synchronisation problem in the perspective of PLSI and not as a service of the softwarized continuum.

Nunavath, N., Garbugli, A., Nande, S.S., Foschini, L., Bassoli, R., Fitzek, F.H.P. (2023). Network Time Synchronization as a Quantum Physical Layer Service. VDE VERLAG GMBH.

Network Time Synchronization as a Quantum Physical Layer Service

Garbugli A.;Foschini L.;
2023

Abstract

In the context of 6G architecture development, the concept of a softwarized (orchestration) continuum is a key pillar. Nevertheless, achieving complete softwarization of network functionalities, tasks, and operations presents inherent challenges, leading to critical trade-offs and limitations. This article explores a novel approach to address these issues by integrating quantum technologies and the Physical Layer Service Integration (PLSI) paradigm. Specifically, we propose the formulation and analysis of network synchronization as a quantum PLSI problem. Our study evaluates synchronization time offset in both conventional Precision Time Protocol (PTP) and quantum-based approaches within the network. We investigate the impact of various network conditions on the precision of PTP synchronization, ranging from nanoseconds under ideal circumstances to microseconds when utilizing virtual network devices. Further, we perform a simulation to generate frequency-entangled photon pairs to access nonlocal temporal correlations and calculate the time offsets. Our findings reveal that entanglement-based PLSI for network synchronization achieves precision at the picosecond level. These results emphasises the high precision achievable by interpreting the network synchronisation problem in the perspective of PLSI and not as a service of the softwarized continuum.
2023
28th European Wireless Conference, EW 2023
302
307
Nunavath, N., Garbugli, A., Nande, S.S., Foschini, L., Bassoli, R., Fitzek, F.H.P. (2023). Network Time Synchronization as a Quantum Physical Layer Service. VDE VERLAG GMBH.
Nunavath, N.; Garbugli, A.; Nande, S. S.; Foschini, L.; Bassoli, R.; Fitzek, F. H. P.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1012702
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact