In the machine learning literature stochastic gradient descent has recently been widely discussed for its purported implicit regularization properties. Much of the theory, that attempts to clarify the role of noise in stochastic gradient algorithms, has approximated stochastic gradient descent by a stochastic differential equation with Gaussian noise. We provide a rigorous theoretical justification for this practice that showcases how the Gaussianity of the noise arises naturally.

Lanconelli, A., Lauria, C.S.A. (2025). A note on diffusion limits for stochastic gradient descent. JOURNAL OF APPROXIMATION THEORY, 309(August), 1-8 [10.1016/j.jat.2025.106160].

A note on diffusion limits for stochastic gradient descent

Lanconelli, Alberto
Primo
Investigation
;
Lauria, Christopher S. A.
Secondo
Investigation
2025

Abstract

In the machine learning literature stochastic gradient descent has recently been widely discussed for its purported implicit regularization properties. Much of the theory, that attempts to clarify the role of noise in stochastic gradient algorithms, has approximated stochastic gradient descent by a stochastic differential equation with Gaussian noise. We provide a rigorous theoretical justification for this practice that showcases how the Gaussianity of the noise arises naturally.
2025
Lanconelli, A., Lauria, C.S.A. (2025). A note on diffusion limits for stochastic gradient descent. JOURNAL OF APPROXIMATION THEORY, 309(August), 1-8 [10.1016/j.jat.2025.106160].
Lanconelli, Alberto; Lauria, Christopher S. A.
File in questo prodotto:
File Dimensione Formato  
Diffusion_SGD_10.pdf

embargo fino al 28/02/2026

Descrizione: Versione accettata
Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 338.22 kB
Formato Adobe PDF
338.22 kB Adobe PDF   Visualizza/Apri   Contatta l'autore
Diffusion_SGD_10.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 338.22 kB
Formato Adobe PDF
338.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1011204
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact