Knowledge of river bathymetry is crucial for accurately simulating river flows and floodplain inundation. However, field data are scarce, and the depth and shape of the river channels cannot be systematically observed via remote sensing. Therefore, an efficient methodology is necessary to define effective river bathymetry. This research reconstructs the bathymetry from existing global digital elevation models (DEMs) and water surface elevation observations with minimum human intervention. The methodology can be considered a 1D geometric inverse problem, and it can potentially be used in gauged or ungauged basins worldwide. Nine global DEMs and two sources of water surface elevation (in situ and remotely sensed) were analyzed across two study areas. Results highlighted the importance of preprocessing cross-sections to align with water surface elevations, significantly improving discharge estimates. Among the techniques tested, one that combines the slope-break concept with the principles of mass conservation consistently provided robust discharge estimates for the different DEMs, achieving good performance in both study areas. Copernicus and FABDEM emerged as the most reliable DEMs for accurately representing river geometry. Overall, the proposed methodology offers a scalable and efficient solution for cross-section reconstruction, supporting global hydraulic modeling in data-scarce regions.
Rezende, I., Fatras, C., Oubanas, H., Gejadze, I., Malaterre, P., Peña-Luque, S., et al. (2025). Reconstruction of Effective Cross-Sections from DEMs and Water Surface Elevation. REMOTE SENSING, 17(6), 1-37 [10.3390/rs17061020].
Reconstruction of Effective Cross-Sections from DEMs and Water Surface Elevation
Domeneghetti, Alessio
2025
Abstract
Knowledge of river bathymetry is crucial for accurately simulating river flows and floodplain inundation. However, field data are scarce, and the depth and shape of the river channels cannot be systematically observed via remote sensing. Therefore, an efficient methodology is necessary to define effective river bathymetry. This research reconstructs the bathymetry from existing global digital elevation models (DEMs) and water surface elevation observations with minimum human intervention. The methodology can be considered a 1D geometric inverse problem, and it can potentially be used in gauged or ungauged basins worldwide. Nine global DEMs and two sources of water surface elevation (in situ and remotely sensed) were analyzed across two study areas. Results highlighted the importance of preprocessing cross-sections to align with water surface elevations, significantly improving discharge estimates. Among the techniques tested, one that combines the slope-break concept with the principles of mass conservation consistently provided robust discharge estimates for the different DEMs, achieving good performance in both study areas. Copernicus and FABDEM emerged as the most reliable DEMs for accurately representing river geometry. Overall, the proposed methodology offers a scalable and efficient solution for cross-section reconstruction, supporting global hydraulic modeling in data-scarce regions.File | Dimensione | Formato | |
---|---|---|---|
2025_Rezende_Reconstruction_Effective_Cross-section_DEMS_RS.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
8.39 MB
Formato
Adobe PDF
|
8.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.