We develop a theory for thermal convection in a double porosity material of Brinkman-Forchheimer type when there is a single temperature. The saturating fluid is one of Kelvin-Voigt type, and the equation for the temperature is one due to C.I. Christov. It is shown that the global nonlinear stability threshold coincides with the linear stability one. A thoroughly analytical discussion of both linear instability analysis and global nonlinear energy stability is provided. Numerical results show that the relative permeability and Brinkman viscosity between the macro and micro pores are key parameters which play a dominant role in determining the critical Rayleigh number for the onset of convective motions.

Franchi, F., Nibbi, R., Straughan, B. (2025). Viscoelastic bidispersive convection with a Kelvin-Voigt fluid. CONTINUUM MECHANICS AND THERMODYNAMICS, 37(2), 1-15 [10.1007/s00161-025-01372-1].

Viscoelastic bidispersive convection with a Kelvin-Voigt fluid

Franca Franchi;Roberta Nibbi
;
Brian Straughan
2025

Abstract

We develop a theory for thermal convection in a double porosity material of Brinkman-Forchheimer type when there is a single temperature. The saturating fluid is one of Kelvin-Voigt type, and the equation for the temperature is one due to C.I. Christov. It is shown that the global nonlinear stability threshold coincides with the linear stability one. A thoroughly analytical discussion of both linear instability analysis and global nonlinear energy stability is provided. Numerical results show that the relative permeability and Brinkman viscosity between the macro and micro pores are key parameters which play a dominant role in determining the critical Rayleigh number for the onset of convective motions.
2025
Franchi, F., Nibbi, R., Straughan, B. (2025). Viscoelastic bidispersive convection with a Kelvin-Voigt fluid. CONTINUUM MECHANICS AND THERMODYNAMICS, 37(2), 1-15 [10.1007/s00161-025-01372-1].
Franchi, Franca; Nibbi, Roberta; Straughan, Brian
File in questo prodotto:
File Dimensione Formato  
s00161-025-01372-1.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 323.73 kB
Formato Adobe PDF
323.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1010597
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact