Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CRIS Current Research Information System
Background: Decades of steady improvements in life expectancy in Europe slowed down from around 2011, well before the COVID-19 pandemic, for reasons which remain disputed. We aimed to assess how changes in risk factors and cause-specific death rates in different European countries related to changes in life expectancy in those countries before and during the COVID-19 pandemic. Methods: We used data and methods from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 to compare changes in life expectancy at birth, causes of death, and population exposure to risk factors in 16 European Economic Area countries (Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, and Sweden) and the four UK nations (England, Northern Ireland, Scotland, and Wales) for three time periods: 1990–2011, 2011–19, and 2019–21. Changes in life expectancy and causes of death were estimated with an established life expectancy cause-specific decomposition method, and compared with summary exposure values of risk factors for the major causes of death influencing life expectancy. Findings: All countries showed mean annual improvements in life expectancy in both 1990–2011 (overall mean 0·23 years [95% uncertainty interval [UI] 0·23 to 0·24]) and 2011–19 (overall mean 0·15 years [0·13 to 0·16]). The rate of improvement was lower in 2011–19 than in 1990–2011 in all countries except for Norway, where the mean annual increase in life expectancy rose from 0·21 years (95% UI 0·20 to 0·22) in 1990–2011 to 0·23 years (0·21 to 0·26) in 2011–19 (difference of 0·03 years). In other countries, the difference in mean annual improvement between these periods ranged from –0·01 years in Iceland (0·19 years [95% UI 0·16 to 0·21] vs 0·18 years [0·09 to 0·26]), to –0·18 years in England (0·25 years [0·24 to 0·25] vs 0·07 years [0·06 to 0·08]). In 2019–21, there was an overall decrease in mean annual life expectancy across all countries (overall mean –0·18 years [95% UI –0·22 to –0·13]), with all countries having an absolute fall in life expectancy except for Ireland, Iceland, Sweden, Norway, and Denmark, which showed marginal improvement in life expectancy, and Belgium, which showed no change in life expectancy. Across countries, the causes of death responsible for the largest improvements in life expectancy from 1990 to 2011 were cardiovascular diseases and neoplasms. Deaths from cardiovascular diseases were the primary driver of reductions in life expectancy improvements during 2011–19, and deaths from respiratory infections and other COVID-19 pandemic-related outcomes were responsible for the decreases in life expectancy during 2019–21. Deaths from cardiovascular diseases and neoplasms in 2019 were attributable to high systolic blood pressure, dietary risks, tobacco smoke, high LDL cholesterol, high BMI, occupational risks, high alcohol use, and other risks including low physical activity. Exposure to these major risk factors differed by country, with trends of increasing exposure to high BMI and decreasing exposure to tobacco smoke observed in all countries during 1990–2021. Interpretation: The countries that best maintained improvements in life expectancy after 2011 (Norway, Iceland, Belgium, Denmark, and Sweden) did so through better maintenance of reductions in mortality from cardiovascular diseases and neoplasms, underpinned by decreased exposures to major risks, possibly mitigated by government policies. The continued improvements in life expectancy in five countries during 2019–21 indicate that these countries were better prepared to withstand the COVID-19 pandemic. By contrast, countries with the greatest slowdown in life expectancy improvements after 2011 went on to have some of the largest decreases in life expectancy in 2019–21. These findings suggest that government policies that improve population health also build resilience to future shocks. Such policies include reducing population exposure to major upstream risks for cardiovascular diseases and neoplasms, such as harmful diets and low physical activity, tackling the commercial determinants of poor health, and ensuring access to affordable health services. Funding: Gates Foundation.
Steel, N., Bauer-Staeb, C.M.M., Ford, J.A., Abbafati, C., Abdalla, M.A., Abdelkader, A., et al. (2025). Changing life expectancy in European countries 1990–2021: a subanalysis of causes and risk factors from the Global Burden of Disease Study 2021. THE LANCET PUBLIC HEALTH, 10(3), e172-e188 [10.1016/S2468-2667(25)00009-X].
Changing life expectancy in European countries 1990–2021: a subanalysis of causes and risk factors from the Global Burden of Disease Study 2021
Steel N.;Bauer-Staeb C. M. M.;Ford J. A.;Abbafati C.;Abdalla M. A.;Abdelkader A.;Abdi P.;Abeldano Zuniga R. A.;Abiodun O. O.;Abolhassani H.;Abu-Gharbieh E.;Abukhadijah H. J.;Abu-Zaid A.;Addo I. Y.;Addolorato G.;Adekanmbi V.;Adetunji J. B.;Adeyeoluwa T. E.;Agardh E. E.;Agyemang-Duah W.;Ahmad D.;Ahmed A.;Ahmed A.;Ahmed S. A.;Akinosoglou K.;Akkaif M. A.;Al Awaidy S.;Al Hasan S. M.;Al Zaabi O. A. M.;Aldridge R. W.;Algammal A. M.;Al-Gheethi A. A. S.;Ali A.;Ali M. U.;Ali S. S.;Ali W.;Alicandro G.;Alif S. M.;Al-Jumaily A.;Allebeck P.;Alrawashdeh A.;Al-Rifai R. H.;Alsabri M. A.;Alshahrani N. Z.;Aluh D. O.;Al-Wardat M.;Al-Zyoud W. A.;Amiri S.;Anderlini D.;Andrei C. L.;Anil A.;Anvari S.;Anyasodor A. E.;Appiah S. C. Y.;Aquilano M.;Arabloo J.;Arafat M.;Areda D.;Aremu A.;Armani K.;Armocida B.;Arnlov J.;Asaduzzaman M.;Astell-Burt T.;Aujayeb A.;Ausloos M.;Azadnajafabad S.;Aziz S.;Azzam A. Y.;Babu G. R.;Badache A. C.;Badiye A. D.;Bahramian S.;Baig A. A.;Baker J. L.;Bansal H.;Barnighausen T. W.;Barone M. T. U.;Barrow A.;Barteit S.;Bashir S.;Bashiru H. A.;Basso J. D.;Bastan M. -M.;Basu S.;Batra K.;Bauckneht M.;Baune B. T.;Beghi M.;Beiranvand M.;Bejot Y.;Bell M. L.;Bello O. O.;Belo L.;Beloukas A.;Beneke A. A.;Bettencourt P. J. G.;Bhagavathula A. S.;Bhala N.;Bhaskar S.;Bisulli F.;Bjorge T.;Bodunrin A. O.;Botero Carvajal A.;Bouaoud S.;Brayne C.;Brenner H.;Briggs A. D. M.;Briko N. I.;Bugiardini R.;Buonsenso D.;Busse R.;Bustanji Y.;Caetano dos Santos F. L.;Cakmak Barsbay M.;Capodici A.;Carreras G.;Carugno A.;Carvalho F.;Carvalho M.;Castaldelli-Maia J. M.;Castelpietra G.;Catapano A. L.;Cattaruzza M. S.;Cegolon L.;Cenko E.;Cerin E.;Cerrai S.;Chaudhary A. A.;Chong B.;Choudhari S. G.;Chu D. -T.;Chukwu I. S.;Chung S. -C.;Cioffi I.;Conde J.;Cortese S.;Couto R. A. S.;Criqui M. H.;Cruz-Martins N.;Dadras O.;Dallat M. A. T.;D'Amico E.;D'Anna L.;Darcho S. D.;Dargan P. I.;Das S.;de la Torre-Luque A.;Del Bo' C.;Demetriades A. K.;Dervenis N.;Devleesschauwer B.;Dhali A.;Dhama K.;Dianatinasab M.;Diaz M. J.;Dongarwar D.;D'Oria M.;Doshi O. P.;Dowou R. K.;Duraisamy S.;Durojaiye O. C.;Dziedzic A. M.;Edvardsson D.;Edvardsson K.;Eikemo T. A.;Ekholuenetale M.;Ekundayo T. C.;El Arab R. A.;Elgar F. J.;Elhadi M.;Eltaha C.;Esposito F.;Fabin N.;Fagbamigbe A. F.;Fagbule O. F.;Fakhri-Demeshghieh A.;Falzone L.;Farinha C. S. E. S.;Faris P. S.;Fasina F. O.;Fazeli P.;Fazylov T.;Feizkhah A.;Fekadu G.;Feng X.;Fereshtehnejad S. -M.;Ferrante D.;Ferrara P.;Ferreira N.;Fetensa G.;Fischer F.;Fonzo M.;Fornari A.;Fortuna D.;Fortuna Rodrigues C.;Foschi M.;Fox S. S.;Freitas A.;Fukumoto T.;Gadanya M. A.;Gallus S.;Galluzzo L.;Ganesan B.;Ganiyani M. A.;Gao X.;Garcia-Gordillo M. A.;Gazzelloni F.;Gebregergis M. W.;Gebremeskel T. G.;Ghadimi D. J.;Ghailan K. Y.;Ghith N.;Gholami E.;Gialluisi A.;Gill P. S.;Gillam T.;Giussani G.;Glasbey J. C.;Glenn S. D.;Gobolos L.;Goldust M.;Golechha M.;Goleij P.;Golinelli D.;Gorini G.;Graham S. M.;Griebler R.;Grover A.;Guicciardi S.;Gunturu S.;Gupta V. K.;Gutierrez-Murillo R. S.;Habteyohannes A. D.;Haep N.;Hai Nam N.;Haller S.;Hamoudi R.;Handanagic S.;Haro J. M.;Hasani H.;Hasnain M. S.;Havmoeller R. J.;Hay S. I.;Hebert J. J.;Heibati B.;Hilderink H. B. M.;Hiraike Y.;Hoan N. Q.;Hosseinzadeh M.;Hostiuc S.;Hoven H.;Hu C.;Huang J.;Hughes A.;Hultstrom M.;Hushmandi K.;Hussain J.;Hussain M. A.;Ikiroma A.;Inok A.;Islam M. R.;Islam S. M. S.;Isola G.;Iyer M.;Jacob L.;Jahrami H.;Jairoun A. A.;Jaka S.;Jakovljevic M.;Jawaid T.;Jeswani B. M.;Jonas J. B.;Joshua C. E.;Kaambwa B.;Kabir Z.;Kadir D. H. H.;Kamath R.;Kanmodi K. K.;Kapoor N.;Karakasis P.;Karanikolos M.;Karaye I. M.;Kauppila J. H.;Kazemian S.;Kesse-Guyot E.;Khamesipour F.;Khan A.;Khanmohammadi S.;Khatab K.;Khatatbeh M. M.;Khormali M.;Khosla A. A.;Khosravi M.;Khosrowjerdi M.;Khubchandani J.;Kim K.;Kim M. S.;Kisa A.;Kisa S.;Knudsen A. K. S.;Koren G.;Kuddus M. A.;Kuitunen I.;Kulimbet M.;Kumar R.;Kunutsor S. K.;Kurmi O. P.;Kusuma D.;Kyto V.;La Vecchia C.;Lai H.;Lallukka T.;Lanfranchi F.;Langguth B.;Laplante-Levesque A.;Larson H. J.;Larsson A. O.;Lee M.;Lee P. H.;Lee S. W.;Lee W. -C.;Lindholm D.;Linehan C.;Liu X.;Llanaj E.;Lopez-Gil J. F.;Lorkowski S.;Lucchetti G.;Lugo A.;Lunevicius R.;Luo L.;M Amin H. I.;Ma Z. F.;Machairas N.;Machoy M.;Malhotra K.;Malik A. A.;Mansour A.;Manu E.;Marateb H. R.;Martini D.;Martorell M.;Marzo R. R.;Mathangasinghe Y.;Mathur M.;Matozinhos F. P.;Maude R. J.;Maugeri A.;May J.;Mayeli M.;Mazidi M.;McKee M.;Mechili E. A.;Mehravar S.;Mekene Meto T.;Meles H. N.;Mentis A. -F. A.;Meretoja A.;Meretoja T. J.;Mettananda S.;Micha G.;Michalek I. M.;Miller T. R.;Minervini G.;Mirijello A.;Mocciaro G.;Moghadam Fard A.;Mohamed J.;Mohamed N. S.;Mohammadian-Hafshejani A.;Mohammed S.;Monasta L.;Mondello S.;Moni M. A.;Moraga P.;Morawska L.;Mossie T. B.;Motappa R.;Mubarik S.;Muccioli L.;Mueller U. O.;Mughal F.;Mulita F.;Munblit D.;Munkhsaikhan Y.;Murray C. J. L.;Naghavi M.;Naghavi P.;Naik G. R.;Najdaghi S.;Naqvi A. A.;Narimani Davani D.;Nascimento G. G.;Naser A. Y.;Nashwan A. J.;Nauman J.;Navaratna S. N. K.;Nazri-Panjaki A.;Nejjari C.;Nena E.;Netsere H. B.;Nguyen A. H.;Nguyen P. T.;Nguyen V. T.;Nnyanzi L. A.;Noor S. T. A.;Nouri M.;Nugen F.;Nurchis M. C.;Nzoputam O. J.;Oancea B.;O'Donnell M. J.;Oduro M. S.;Ogundijo O. A.;Ogunsakin R. E.;Okeke S. R.;Okonji O. C.;Olagunju A. T.;Oliver S.;Olufadewa I. I.;Ortiz A.;Owolabi M. O.;P A M. P.;Padubidri J. R.;Palma-Alvarez R. F. F.;Panda S. K.;Panda-Jonas S.;Panos G. D.;Panos L. D.;Pantazopoulos I.;Pardhan S.;Parikh R. R.;Passera R.;Patil S.;Patoulias D.;Pawar S.;Pensato U.;Pereira G.;Perico N.;Perna S.;Petermann-Rocha F. E.;Pham H. N.;Philip A. K.;Pierannunzio D.;Pigeolet M.;Pisoni E.;Poddighe D.;Poluru R.;Postma M. J.;Pradhan J.;Pupillo E.;Puvvula J.;Raggi A.;Rahman M.;Rahman M. A.;Raimondo D.;Raimondo I.;Ramasamy S. K.;Ramazanu S.;Rana R. K.;Rao S. J.;Rasella D.;Rashid A. M.;Rauniyar S. K.;Rautalin I.;Rawaf D. L.;Rawaf S.;Reddy M. M. R. K.;Redwan E. M. M. M.;Reifels L.;Remuzzi G.;Rezaeian M.;Ribeiro A. I.;Rijal A.;Rodriguez J. A. B.;Romoli M.;Ronfani L.;Root K. T.;Rout H. S.;Roy N.;Russo M.;Saad A. M. A.;Sabet C. J.;Sachdeva Dhingra M.;Saeed U.;Safari M.;Safdarian M.;Saleh M. A.;Salem M. Z. Y.;Salum G. A.;Samuel V. P.;Samy A. M.;Saravanan A.;Saravi B.;Sarkar C.;Saulam J.;Scarmeas N.;Schaarschmidt B. M.;Schinckus C.;Schlaich M. P.;Schmidt J. C.;Schuermans A.;Schumacher A. E.;Schwendicke F.;Schwinger C.;Sepanlou S. G.;Shafie M.;Shahsavari H. R.;Shaikh M. A.;Shakil H.;Sham S.;Shamim M. A.;Sharew N. T.;Sharifan A.;Shavandi A.;Shenoy R. R.;Shetty M.;Shetty P. H.;Shetty P. K.;Shigematsu M.;Shittu A.;Shiue I.;Shorofi S. A.;Shrestha R.;Shrestha R.;Siddig E. E.;Silva J. P.;Silva L. M. L. R.;Silva S.;Singh P.;Singh S.;Sipila J. O. T.;Skryabina A. A.;Sokhan A.;Soraneh S.;Soriano J. B.;Soyiri I. N.;Spartalis M.;Steiropoulos P.;Stockfelt L.;Sun J.;Sundstrom J.;Sunkersing D.;Sunnerhagen K. S.;Swain C. K.;Szarpak L.;T Y S. S.;Tabaee Damavandi P.;Tabares-Seisdedos R.;Tabatabaei S. M.;Tabche C.;Tabibi R.;Taiba J.;Tanwar M.;Tat N. Y.;Taveira N.;Temsah M. -H.;Thayakaran R.;Tiruye T. Y.;Touvier M.;Tovani-Palone M. R.;Tran J. T.;Tran N. H.;Tran T. H.;Trico D.;Tromans S. J.;Tsermpini E. E.;Tudor Car L.;Tumurkhuu M.;Ullah S.;Unim B.;Vaithinathan A. G.;Valenti M.;Van den Eynde J.;Varga O.;Vasankari T. J.;Vellingiri B.;Veroux M.;Vervoort D.;Villafane J. H.;Violante F. S.;Vizzielli G.;Vodden A.;Vollset S. E.;Vos T.;Wafa H. A.;Wang Y.;Wassie E. G.;Weerakoon K. G.;Westerman R.;Wickramasinghe N. D.;Willeit P.;Wojewodzic M. W.;Wolf A. W.;Wolfe C. D. A.;Wyper G. M. A.;Xu X.;Yasufuku Y.;Yaya S.;Yezli S.;YiAYit A.;Yon D. K.;Yu C.;Zakham F.;Zanghi A.;Zastrozhin M.;Zeariya M. G. M.;Zhang L.;Zhang Z.;Zhong C. C.;Zhu B.;Ziafati M.;Zielinska M.;Zweck E.;Zyoud S. H.;Newton J. N.
2025
Abstract
Background: Decades of steady improvements in life expectancy in Europe slowed down from around 2011, well before the COVID-19 pandemic, for reasons which remain disputed. We aimed to assess how changes in risk factors and cause-specific death rates in different European countries related to changes in life expectancy in those countries before and during the COVID-19 pandemic. Methods: We used data and methods from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 to compare changes in life expectancy at birth, causes of death, and population exposure to risk factors in 16 European Economic Area countries (Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, and Sweden) and the four UK nations (England, Northern Ireland, Scotland, and Wales) for three time periods: 1990–2011, 2011–19, and 2019–21. Changes in life expectancy and causes of death were estimated with an established life expectancy cause-specific decomposition method, and compared with summary exposure values of risk factors for the major causes of death influencing life expectancy. Findings: All countries showed mean annual improvements in life expectancy in both 1990–2011 (overall mean 0·23 years [95% uncertainty interval [UI] 0·23 to 0·24]) and 2011–19 (overall mean 0·15 years [0·13 to 0·16]). The rate of improvement was lower in 2011–19 than in 1990–2011 in all countries except for Norway, where the mean annual increase in life expectancy rose from 0·21 years (95% UI 0·20 to 0·22) in 1990–2011 to 0·23 years (0·21 to 0·26) in 2011–19 (difference of 0·03 years). In other countries, the difference in mean annual improvement between these periods ranged from –0·01 years in Iceland (0·19 years [95% UI 0·16 to 0·21] vs 0·18 years [0·09 to 0·26]), to –0·18 years in England (0·25 years [0·24 to 0·25] vs 0·07 years [0·06 to 0·08]). In 2019–21, there was an overall decrease in mean annual life expectancy across all countries (overall mean –0·18 years [95% UI –0·22 to –0·13]), with all countries having an absolute fall in life expectancy except for Ireland, Iceland, Sweden, Norway, and Denmark, which showed marginal improvement in life expectancy, and Belgium, which showed no change in life expectancy. Across countries, the causes of death responsible for the largest improvements in life expectancy from 1990 to 2011 were cardiovascular diseases and neoplasms. Deaths from cardiovascular diseases were the primary driver of reductions in life expectancy improvements during 2011–19, and deaths from respiratory infections and other COVID-19 pandemic-related outcomes were responsible for the decreases in life expectancy during 2019–21. Deaths from cardiovascular diseases and neoplasms in 2019 were attributable to high systolic blood pressure, dietary risks, tobacco smoke, high LDL cholesterol, high BMI, occupational risks, high alcohol use, and other risks including low physical activity. Exposure to these major risk factors differed by country, with trends of increasing exposure to high BMI and decreasing exposure to tobacco smoke observed in all countries during 1990–2021. Interpretation: The countries that best maintained improvements in life expectancy after 2011 (Norway, Iceland, Belgium, Denmark, and Sweden) did so through better maintenance of reductions in mortality from cardiovascular diseases and neoplasms, underpinned by decreased exposures to major risks, possibly mitigated by government policies. The continued improvements in life expectancy in five countries during 2019–21 indicate that these countries were better prepared to withstand the COVID-19 pandemic. By contrast, countries with the greatest slowdown in life expectancy improvements after 2011 went on to have some of the largest decreases in life expectancy in 2019–21. These findings suggest that government policies that improve population health also build resilience to future shocks. Such policies include reducing population exposure to major upstream risks for cardiovascular diseases and neoplasms, such as harmful diets and low physical activity, tackling the commercial determinants of poor health, and ensuring access to affordable health services. Funding: Gates Foundation.
Steel, N., Bauer-Staeb, C.M.M., Ford, J.A., Abbafati, C., Abdalla, M.A., Abdelkader, A., et al. (2025). Changing life expectancy in European countries 1990–2021: a subanalysis of causes and risk factors from the Global Burden of Disease Study 2021. THE LANCET PUBLIC HEALTH, 10(3), e172-e188 [10.1016/S2468-2667(25)00009-X].
Steel, N.; Bauer-Staeb, C. M. M.; Ford, J. A.; Abbafati, C.; Abdalla, M. A.; Abdelkader, A.; Abdi, P.; Abeldano Zuniga, R. A.; Abiodun, O. O.; Abolhas...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1010186
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
ND
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.