We consider a hybrid FEM-BEM method to compute approximations of full space linear elliptic transmission problems. First, we derive a priori and a posteriori error estimates. Then, building on the latter, we present an adaptive algorithm and prove that it converges at optimal rates with respect to the number of mesh elements. Finally, we provide numerical experiments, demonstrating the practical performance of the adaptive algorithm.

Gantner, G., Ruggeri, M. (In stampa/Attività in corso). Optimal convergence rates of an adaptive hybrid FEM-BEM method for full-space linear transmission problems. IMA JOURNAL OF NUMERICAL ANALYSIS, 0, 0-0 [10.1093/imanum/draf023].

Optimal convergence rates of an adaptive hybrid FEM-BEM method for full-space linear transmission problems

Michele Ruggeri
In corso di stampa

Abstract

We consider a hybrid FEM-BEM method to compute approximations of full space linear elliptic transmission problems. First, we derive a priori and a posteriori error estimates. Then, building on the latter, we present an adaptive algorithm and prove that it converges at optimal rates with respect to the number of mesh elements. Finally, we provide numerical experiments, demonstrating the practical performance of the adaptive algorithm.
In corso di stampa
Gantner, G., Ruggeri, M. (In stampa/Attività in corso). Optimal convergence rates of an adaptive hybrid FEM-BEM method for full-space linear transmission problems. IMA JOURNAL OF NUMERICAL ANALYSIS, 0, 0-0 [10.1093/imanum/draf023].
Gantner, Gregor; Ruggeri, Michele
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1010003
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact