We exhibit a group of type F whose second cohomology contains a weakly bounded, but not bounded, class. As an application, we disprove a long-standing conjecture of Gromov about bounded primitives of differential forms on universal covers of closed manifolds.

Ascari, D., Milizia, F. (2024). Weakly bounded cohomology classes and a counterexample to a conjecture of Gromov. GEOMETRIC AND FUNCTIONAL ANALYSIS, 34(3), 631-658 [10.1007/s00039-024-00676-9].

Weakly bounded cohomology classes and a counterexample to a conjecture of Gromov

Milizia, Francesco
2024

Abstract

We exhibit a group of type F whose second cohomology contains a weakly bounded, but not bounded, class. As an application, we disprove a long-standing conjecture of Gromov about bounded primitives of differential forms on universal covers of closed manifolds.
2024
Ascari, D., Milizia, F. (2024). Weakly bounded cohomology classes and a counterexample to a conjecture of Gromov. GEOMETRIC AND FUNCTIONAL ANALYSIS, 34(3), 631-658 [10.1007/s00039-024-00676-9].
Ascari, Dario; Milizia, Francesco
File in questo prodotto:
File Dimensione Formato  
Weakly bounded cohomology classes and a counterexample to a conjecture of Gromov.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1009884
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact