Melanin is responsible, in Nature, for photoprotection, for this reason it is expected to be poorly photoreactive. However, the photo-reactivity of melanin and related materials is well documented. Here we discuss some relevant recent examples to demonstrate that, indeed, the actual mechanism of interaction of melanin with light is complex and still not completely understood. Photochemical and photothermal processes are involved, giving a contribution that strongly depends on light wavelength and intensity. Moreover, some interesting experiments demonstrated that photochemical reactivity of melanin related compounds is likely to be indirect, in the sense that the effect of light is to increase the number of radical species rather than creating photoreactive excited state. These suggestions open-up new perspectives in the interpretation of the role of melanin in photoprotection and in the design of new melanin based photoactive materials for energy conversion, environmental remediation, and nanomedicine. Further complication is given by the role of atmospheric oxygen and humidity in the photoinduced processes. Beside this complexity of behavior makes it difficult a systematic understanding of the interaction of melanin with light, it surely strongly contributes to make the properties of melanin and related materials unique.

Menichetti, A., Mordini, D., Montalti, M. (2024). Melanin and Light. CHEMISTRY-A EUROPEAN JOURNAL, 30(70), 1-6 [10.1002/chem.202400461].

Melanin and Light

Menichetti A.;Mordini D.;Montalti M.
2024

Abstract

Melanin is responsible, in Nature, for photoprotection, for this reason it is expected to be poorly photoreactive. However, the photo-reactivity of melanin and related materials is well documented. Here we discuss some relevant recent examples to demonstrate that, indeed, the actual mechanism of interaction of melanin with light is complex and still not completely understood. Photochemical and photothermal processes are involved, giving a contribution that strongly depends on light wavelength and intensity. Moreover, some interesting experiments demonstrated that photochemical reactivity of melanin related compounds is likely to be indirect, in the sense that the effect of light is to increase the number of radical species rather than creating photoreactive excited state. These suggestions open-up new perspectives in the interpretation of the role of melanin in photoprotection and in the design of new melanin based photoactive materials for energy conversion, environmental remediation, and nanomedicine. Further complication is given by the role of atmospheric oxygen and humidity in the photoinduced processes. Beside this complexity of behavior makes it difficult a systematic understanding of the interaction of melanin with light, it surely strongly contributes to make the properties of melanin and related materials unique.
2024
Menichetti, A., Mordini, D., Montalti, M. (2024). Melanin and Light. CHEMISTRY-A EUROPEAN JOURNAL, 30(70), 1-6 [10.1002/chem.202400461].
Menichetti, A.; Mordini, D.; Montalti, M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1009872
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact