The imputation of missing data is a common procedure in data analysis that consists in predicting missing values of incomplete data points. In this work, we analyze a variational quantum circuit for the imputation of missing data. We construct variational quantum circuits with gates complexity O(N) and O(N2) that return the last missing bit of a binary string for a specific distribution. We train and test the performance of the algorithms on a series of datasets finding good convergence of the results. Finally, we test the circuit for generalization to unseen data. For simple systems, we are able to describe the circuit analytically, making it possible to skip the tedious and unresolved problem of training the circuit with repetitive measurements. We find beforehand the optimal values of the parameters and make use of them to construct an optimal circuit suited to the generation of truly random data.

Sanavio, C., Tibaldi, S., Tignone, E., Ercolessi, E. (2024). Quantum Circuit for Imputation of Missing Data. IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 5, 1-12 [10.1109/TQE.2024.3447875].

Quantum Circuit for Imputation of Missing Data

Sanavio C.
Primo
;
Tibaldi S.;Ercolessi E.
Ultimo
2024

Abstract

The imputation of missing data is a common procedure in data analysis that consists in predicting missing values of incomplete data points. In this work, we analyze a variational quantum circuit for the imputation of missing data. We construct variational quantum circuits with gates complexity O(N) and O(N2) that return the last missing bit of a binary string for a specific distribution. We train and test the performance of the algorithms on a series of datasets finding good convergence of the results. Finally, we test the circuit for generalization to unseen data. For simple systems, we are able to describe the circuit analytically, making it possible to skip the tedious and unresolved problem of training the circuit with repetitive measurements. We find beforehand the optimal values of the parameters and make use of them to construct an optimal circuit suited to the generation of truly random data.
2024
Sanavio, C., Tibaldi, S., Tignone, E., Ercolessi, E. (2024). Quantum Circuit for Imputation of Missing Data. IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 5, 1-12 [10.1109/TQE.2024.3447875].
Sanavio, C.; Tibaldi, S.; Tignone, E.; Ercolessi, E.
File in questo prodotto:
File Dimensione Formato  
10643709.pdf

accesso aperto

Descrizione: File pdf
Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 963.72 kB
Formato Adobe PDF
963.72 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1009777
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact